Giải hệ phương trình: \(\hept{\begin{cases}\left(x-\sqrt{y^2-1}+\sqrt{x^2+y^2-2x\sqrt{y^2-1}}\right)\left(\sqrt{y^2+1}+y\right)=1\\\sqrt{y^2-1}=\frac{y^2}{\sqrt{1+y^2}}+\frac{2xy+1}{1+x^2}\end{cases}}\)
Cố gắng nha các bạn ~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
học lớp 9 chưa mà đòi đăng ? :))
a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )
Vậy với x = 0 thì A = 0
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
Xét hiệu P - 1 ta có :
\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)
Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0
=> P < 1
a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)
a) xét (o) có:
góc AEB=90 độ( góc nt chắn nửa đt)⇒góc BEK=90 độ
góc AFB=90 độ( góc nt chắn nửa đt)⇒góc AFK=90 độ
Xét tứ giác KEFH có:
góc BEK=90 độ
góc AFK=90 độ
⇒góc BEK +góc AFK=180 độ
⇒tứ giác KEFH nt ( tứ giác có tổng 2 góc đối= 180 độ)