Cho \(\Delta ABQ\)vuông tại A với \(AB=1\). Trên cạnh AQ lấy 3 điểm M, N, P sao cho \(AM< AN< AP\), biết rằng \(4AM+3MN+2NP+PQ=4\). Chứng minh rằng \(\frac{AM}{BN^2}+\frac{AN}{BP^2}+\frac{AP}{BQ^2}+\frac{AQ}{BM^2}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(Na_2O_2+2KO_2+2CO_2\rightarrow O_2\uparrow+K_2CO_3+Na_2CO_3\)
b, Tỉ lệ 2:1
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
Ta có: \(\overline{ab}\) là số nguyên tố vì thế, b lẻ, do đó: a2+3 phải là số chẵn. Hay a là số lẻ. Ta xét các trường hợp: Nếu: a=1 suy ra: 10+b=b2+4 hay (b-3)(b+2)=0; ta tìm được b=3. Nếu: a=3 suy ra: 30+b=b2+12 hay b2-b-18=0. Phương trình không có nghiệm nguyên dương. Nếu: a=5 suy ra: 50+b=b2+28 tương tự... Nếu a=7; a=9... Tìm được số nhà của Bình là 13.
Đặt \(BC=a;AC=b;AB=c\left(a,b,c>0\right)\)
\(\Delta BCF\)có phân giác trong BI \(\left(I\in CF\right)\)\(\Rightarrow\frac{IF}{IC}=\frac{BF}{BC}\)(1)
\(\Delta ABC\)có phân giác trong CF \(\left(F\in AB\right)\)\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}=\frac{c}{a+b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{IF}{IC}=\frac{c}{a+b}\)
Tương tự, ta có \(\frac{IE}{IB}=\frac{b}{c+a}\); \(\frac{ID}{IA}=\frac{a}{b+c}\)
Từ đó \(\frac{ID}{IA}+\frac{IE}{IB}+\frac{IF}{IC}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)với \(a,b,c>0\)
Thật vậy: Ta chứng minh bất đẳng thức phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương \(x,y,z\), ta có: \(x+y+z\ge3\sqrt[3]{xyz}\)
Tương tự, ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Từ đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
Vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức trên, ta có: \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\ge\frac{9}{2}\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{b}{c+a}+1+\frac{a}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\)đpcm
Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một
trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)