cho nửa đường tròn tâm O đường kính AB. Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn vẽ tia Ax vuông góc AB. Lấy điểm C trên nửa đường tròn ,đường thẳng qua O vuông góc với dây AC cắt Ax tại điểm M.Đoạn thẳng AC cắt MO tại E ,MB cắt nửa đường tròn tại D (D khác B)
1.CM : MC là tiếp tuyến của (o)
2.CM : AMCO và MAED là tứ giác nội tiếp
O A B x C E D M
a, xét tg AEO và CEO có : EO chung
^AEO = ^CEO = 90
OA = OC = r
=> Tg AEO = tg CEO (ch-cgv)
=> ^AOE = ^COE
xét tg MAO và tg MCO có : Mo chung
OA = OC = r
=> tg MAO = tg MCO (cg-c)
=> ^MAO = ^MCO
mà ^MAO = 90
=> ^MCO = 90 => OC _|_ MC
có C thuộc 1/2(o)
=> MC là tt của 1/2(o)
b, xét tứ giác MCOA có : ^MCO = ^MAO = 90
=> ^MCO + ^MAO = 180
=>MCOA nội tiếp
+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM
có MEA = 90 do AC _|_ MO (Gt)
=> ^ADM = ^MEA = 90
=> MDEA nt