Giải phương trình:
(x^2 - 2.x + 1) - 2.(x-1) + 1 = 0
(x-3).(x+4)=(x-3).(x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(a\ge b\ge c>0\)
Ta có : \(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)
TT: \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)
Do đó: \(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\)
\(+ca\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)
Vì \(a\ge b\ge c\) => gtri bt > 0
=> đpcm
Gọi thời gian dự định là x ( giờ) , vận tốc của xe lúc đầu là y ( km/h) ( x,y>0)
=> Chiều dài quãng đường AB là xy ( km)
Khi xe chạy nhanh hơn 10km mỗi giờ thì :
+) Vận tốc của xe lúc này là: y+10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x-3 ( giờ)
Ta có pt: ( x-3)(y+10)=xy (1)
Khi xe chạy chậm hơn 10km mỗi giờ thì:
+) Vận tốc của xe lúc này là: y-10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x+5 ( giờ)
Ta có pt: ( x+5)(y-10)=xy (2)
Từ (1) & (2) ta có hệ: \(\hept{\begin{cases}\left(x-3\right)\left(y+10\right)=xy\\\left(x+5\right)\left(y-10\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+10x-3y-30=xy\\xy-10x+5y-50=xy\end{cases}\Leftrightarrow\hept{\begin{cases}10x-3y=30\\-10x+5y=50\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-3y=30\\2y=80\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=40\end{cases}}}\)
Vậy thời gian xe dự định đi hết quãng đường AB là 15 giờ, vận tốc của xe lúc đầu là 40km/h.
Độ dài quãng đường AB là: 15.40=600(km)
tự kết luận nhé
a,\(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1-1\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4-x-5\right)=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(x+4-x-5\ne0\Leftrightarrow0x\ne1\)
a) \(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
b) \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)