Tìm x thuộc Z để mỗi biểu thức sau đạt giá trị nguyên.
b.B= 2x^3 -9x^2+10x+4/2x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6.
a) \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left(x^2+y^2\right)^3-6x^2y^2\left(x^2+y^2\right)-3\left(x^2+y^2\right)^2+6x^2y^2\)
\(=-1\)
b) \(2x^4-y^4+x^2y^2+3y^2=2x^4-y^4+x^2y^2+3y^2\left(x^2+y^2\right)\)
\(=2x^4+2y^4+4x^2y^2=2\left(x^2+y^2\right)^2=2\)
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
2xy - x^2 + 3y^2-4y +1 = (y+x-1)(3y-x-1)
1. \(x^2+2x+6\)
= \(\left(x^2+2x+4\right)-4+6\)
= \(\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\)nên \(\left(x+2\right)^2+2\ge2\)
Vậy GTNN của biểu thức là 2 khi x = -2
1. \(x^2+2x+6\)
= \(\left(x^2+2x+1\right)-1+6\)
= \(\left(x+1\right)^2+5\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+5\ge5\)
Vậy GTNN của biểu thức là 5 khi x = -1
(Câu vừa nãy đánh sai thế giải sai luôn, còn câu này sửa lại đã đúng)
a.\(A=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=x-1+\frac{5}{3x+2}\)
là số nguyên khi 3x+2 là ước của 5 hay \(\orbr{\begin{cases}3x+2=\pm1\\3x+2=\pm5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
b.\(B=\frac{2x^3-9x^2+10x+4}{2x-1}=\frac{2x^3-x^2-8x^2+4x+6x-3+7}{2x-1}=x^2-4x+3+\frac{7}{2x-1}\)
là số nguyên khi 2x-1 là ước của 7 hay \(\orbr{\begin{cases}2x-1=\pm7\\2x-1=\pm1\end{cases}}\Leftrightarrow x\in\left\{-3,0,1,4\right\}\)
B= 2x^3 -9x^2+10x+4/2x-1
B = (2x - 1)(x^2 - 4x + 3) + 7/2x - 1
để B nguyên <=> 7 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(7)
=> 2x - 1 thuộc {-1;1;-7;7}
=> 2x thuộc {0;2;-6;8}
=> x thuộc {0;1;-3;4}