Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{2x-y}{x+y}=\frac{1}{3}$
$\Rightarrow 3(2x-y)=x+y$
$\Leftrightarrow 6x-3y=x+y$
$\Leftrightarrow 5x=4y$
$\Leftrightarrow x=\frac{4}{5}y$. Thay vào biểu thức A:
$A=\frac{\frac{4}{5}y+y}{2.\frac{4}{5}y+y}=\frac{\frac{9}{5}y}{\frac{13}{5}y}=\frac{9}{13}$
\(A=\dfrac{3x-1}{x+2}\inℕ\left(x\inℕ;x\ne-2\right)\)
\(\Rightarrow3x-1⋮x+2\)
\(\Rightarrow3x-1-3\left(x+2\right)⋮x+2\)
\(\Rightarrow3x-1-3x-6⋮x+2\)
\(\Rightarrow-7⋮x+2\)
\(\Rightarrow x+2\in U\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x\in\left\{-1;5\right\}\)
\(\Rightarrow x\in\left\{5\right\}\left(x\inℕ\right)\)
a) Vẽ tia By' là tia đối của tia By
Ta có:
∠ABy' + ∠ABy = 180⁰ (kề bù)
⇒ ∠ABy' = 180⁰ - ∠ABy
= 180⁰ - 135⁰
= 45⁰
⇒ ∠ABy' = ∠BAx = 45⁰
Mà ∠ABy' và ∠BAx là hai góc so le trong
⇒ By // Ax
b) Ta có:
∠CBy' = ∠ABC - ∠ABy'
= 75⁰ - 45⁰
= 30⁰
⇒ ∠CBy' = ∠BCz = 30⁰
Mà ∠CBy' và ∠BCz là hai góc so le trong
⇒ By // Cz
\(a^m=a^n\)
\(\Rightarrow m=n\)
Với \(a^m=a^n\) mọi \(m=n\)
Vậy: \(m=n\in\left\{1;2;3;4;...\right\}\)
\(a=2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(b=3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(c=5^{50}=\left(5^2\right)^{25}=25^{25}\)
Vì \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow a< c< b\)
\(a=2^{100},b=3^{75},c=5^{50}\\ \Rightarrow a=30^{85},b=30^{65},c=30^{44}\\ \Rightarrow a>b>c\)
\(32^9=\left(2^5\right)^9=2^{45}=8^{13}.2^6\)
\(18^{13}=9^{13}.2^{13}\)
\(9^{13}>8^{13};2^6< 2^{13}\)
\(\Rightarrow32^9< 18^{13}\Rightarrow\left(-32\right)^9>\left(-18\right)^{13}\)
Mình cảm thấy đề bài hơi sai sai bạn có thể xem lại được không ạ
a) Vì \(\widehat{OAT}\) và \(\widehat{XAT}\) là 2 góc kề bù nên :
\(\widehat{OAT}+\widehat{XAT}=180^o\)
\(80^o+\widehat{XAT}=180^o\)
\(\Rightarrow\widehat{XAT}=180^o-80^o=100^o\)
Vậy \(\widehat{XAT}\) \(=100^o\)
Vì tia At là tia phân giác của \(\widehat{XAT}\) nên :
\(\Rightarrow\widehat{XAT}=\widehat{7At'}=\dfrac{\widehat{xAt}}{2}=\dfrac{100^0}{2}=50^o\)
Vì \(\widehat{XAT}\) và \(\widehat{XOY}\) là 2 góc đồng vị nên \(\widehat{XAT}\)\(=\widehat{XOY}=50^o\)
\(\Rightarrow At'//Oy\)
b) Do \(\widehat{BOA}\) và \(\widehat{NBO}\) là 2 góc so le trong mà \(\widehat{BOA}=\widehat{NBO}=50^o\)
\(\Rightarrow Bn//Ox\)
\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)
Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn
\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)
\(\Rightarrow A=\dfrac{1}{1999}\)
gợi ý nè
tính hết mấy cái hiệu trong ngoặc rồi nhân lại
vì kết thúc ở số 1999
nên sẽ có 1999 dấu -
nên kq là âm
nhân ra rồi triệt tiêu đi
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)