Cho các số thực dương thỏa mãn a+b+c =9. CMR: \(\frac{a^2}{b+1}+\frac{b^2}{c+1}+\frac{c^2}{a+1}\ge\frac{27}{4}\)Mong các cao nhân hỗ trọ bằng BĐT Cauchy ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)
Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)
\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)
Vậy BĐT được cm
Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Gọi quãng đường AB là x (km)
Thời gian xe máy đi từ A đến B là: x/40(h)
Thời gian xe máy đi từ B về A là: x/50(h)
Đổi 45 phút=3/4 h
Ta có phương trình:
x/40 -x/50 = 3/4
=> 5x - 4x = 150
<=> x = 150
Vậy quãng đường AB dài 150 km
\(Q=\left(x+\dfrac{2}{x}\right)^2+\left(y+\dfrac{2}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{2}{x}+y+\dfrac{2}{y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2\sqrt{\dfrac{x}{x}}+2\sqrt{\dfrac{y}{y}}+\dfrac{4}{x+y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(4+\dfrac{4}{x+y}\right)^2\ge\dfrac{1}{2}\left(4+\dfrac{4}{2}\right)^2=18\)
\(Q_{min}=18\) khi \(x=y=1\)
\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)
\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)
\(\ge2+2+9+9-6.2+8=18\)
\(C=x^2+y^2+\dfrac{4}{x^2}+\dfrac{4}{y^2}\)
\(=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Cô si cho 2 số dương, ta có:
\(C\ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(=4+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Svácxơ, ta có:
\(C\ge4+3.\dfrac{4}{x^2+y^2}=4+\dfrac{12}{x^2+y^2}\)
\(C\ge4+\dfrac{12}{2}=4+6=10\)\(\left(x^2+y^2\le2\right)\)
Dấu "=" \(\Leftrightarrow x=y=1\)
\(C=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(C\ge2\sqrt{\dfrac{x^2}{x^2}}+2\sqrt{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge4+\dfrac{3}{2}\left(\dfrac{4}{x+y}\right)^2\ge4+\dfrac{3}{2}.\left(\dfrac{4}{2}\right)^2=10\)
\(C_{min}=10\) khi \(x=y=1\)
\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)
Áp dụng BĐT Bunhiacopxki:
\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)
\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
\(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow\left(x+y+z\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)
Dấu "=" ⇔ a=b=c=3
Áp dụng BĐT Cô-si:
\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\)
Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)
Cộng vế:
\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)