tính giá trị biểu thức
a, 5 - ( -5/11) +(1/3)\(^2\): 3
b, \(2^3\) + 3 x (1/2)\(^0\) + (-2)\(^2\) : 1/2
c, ( 3/4 )\(^2\) - (1/3)\(^4\) : (1/9)\(^2\) - (3/11)\(^0\) : (-1/5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
ΔADB vuông tại D
=>\(DA^2+DB^2=AB^2\)
=>\(DB=\sqrt{5^2-4^2}=3\left(cm\right)\)
b: Xét ΔHDB vuông tại D và ΔHEA vuông tại E có
\(\widehat{DHB}=\widehat{EHA}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEA
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HA}\)
=>\(HD\cdot HA=HB\cdot HE\)
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(BD=AB.sinA=c\sqrt{1-cos^2A}\)
\(CD=AC-AD=b-c.cosA\)
Tam giác BCD vuông tại D
\(\Rightarrow BC^2=CD^2+BD^2\)
\(\Leftrightarrow a^2=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(\Leftrightarrow a^2=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\)
Ta có đpcm.
11 × 68 + 46 × 33
= 11 × 68 + 46 × 3 × 11
= 11 × 68 + 132 × 11
= 11 × (68 + 132)
= 11 × 200
= 11 × 2 × 100
= 22 × 100
= 2200
11 x 68 + 46 x 33
=748 + 1518
= 2266
ko biết đúng ko nữa
5)
a) \(3x+8y=26\)
\(\Leftrightarrow y=\dfrac{26-3x}{8}\)
Vì \(y\inℤ\) nên \(\dfrac{26-3x}{8}\inℤ\)
\(\Rightarrow26-3x⋮8\)
\(\Leftrightarrow3x\equiv2\left(mod8\right)\)
Vì \(ƯCLN\left(3,8\right)=1\) nên đặt \(x=8q+r\left(0\le r< 8\right)\) thì:
\(3\left(8q+r\right)\equiv2\left(mod8\right)\)
\(\Leftrightarrow24q+3r\equiv2\left(mod8\right)\)
\(\Leftrightarrow3r\equiv2\left(mod8\right)\)
Thử từng trường hợp, ta thấy ngay \(r=6\).
Vậy \(x=8q+6\)
\(\Rightarrow y=\dfrac{26-3x}{8}=\dfrac{26-3\left(8q+6\right)}{8}=\dfrac{8-24q}{8}=1-3q\)
Vậy phương trình đã cho có nghiệm nguyên là \(\left(8q+6,1-3q\right)\) với \(q\inℤ\) bất kì.
b) Cho \(1-3q>0\Leftrightarrow q< \dfrac{1}{3}\)
Cho \(8q+6>0\Leftrightarrow q>-\dfrac{3}{4}\)
Do đó \(-\dfrac{3}{4}< q< \dfrac{1}{3}\). Mà \(q\inℤ\Rightarrow q=0\)
Thế vào \(x,y\), pt sẽ có nghiệm nguyên dương là \(\left(6;1\right)\)
Câu 6 làm tương tự nhé bạn.
Ta có :
\(12=2^2.3\)
\(15=3.5\)
\(=>BCNN\left(12;15\right)=3.5.2^2=3.5.4=60\)
\(=>60:12=5;60:15=4\)
\(\dfrac{5}{12}=\dfrac{5.5}{12.5}=\dfrac{25}{60}\)
\(\dfrac{8}{15}=\dfrac{8.4}{15.4}=\dfrac{32}{60}\)
Vì \(25< 32\) nên
\(=>\dfrac{25}{60}< \dfrac{32}{60}\)
\(=>\dfrac{5}{12}< \dfrac{8}{15}\)
Vậy \(\dfrac{5}{12}< \dfrac{8}{15}\)
Nếu có gì sai sót thì nhớ bảo mình , mình cảm ơn!
Olm chào em,cảm ơn đã đồng hành cùng Olm trên hành trình tri thức, Cảm ơn đánh giá của em về chất lượng bài giảng của Olm.
Chúc em học tập hiệu quả và có những giây phút giao lưu thú vị vui vẻ cùng Olm em nhé.
Số hòn bi của bạn Bình là:
5 + 4 = 9 (hòn bi)
Số hòn bi của bạn Căn là:
9 + 3 = 12 (hòn bi)
a; 5 - (- \(\dfrac{5}{11}\) ) + (\(\dfrac{1}{3}\))2 : 3
= 5 + \(\dfrac{5}{11}\) + \(\dfrac{1}{9}\) : 3
= \(\dfrac{55}{11}\) + \(\dfrac{5}{11}\) + \(\dfrac{1}{9}\) x \(\dfrac{1}{3}\)
= \(\dfrac{55}{11}\) + \(\dfrac{5}{11}\) + \(\dfrac{1}{27}\)
= \(\dfrac{60}{11}\) + \(\dfrac{1}{27}\)
= \(\dfrac{1620}{297}\) + \(\dfrac{11}{297}\)
= \(\dfrac{1631}{297}\)
b; 23 + 3 x (\(\dfrac{1}{2}\))0 + (- 2)2 : \(\dfrac{1}{2}\)
= 8 + 3 x 1 + 4 : \(\dfrac{1}{2}\)
= 8 + 3 + 4 x \(\dfrac{2}{1}\)
= 8 + 3 + 8
= 11 + 8
= 19