Cho tam giác ABC có Â < 900. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. Gọi M là trung điểm của DE, kẻ tia MA. Chứng minh rằng : MA ⊥BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bn ko nên thê này
làm ơn làm ơn hãy giúp mình câu này nha mình rất gấp rồi, mình thề sẽ quỳ gối trước bạn nào giúp mình
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1:olm\)
\(2:violympic\)
\(3:ioe\)
\(4,vioedu\)
\(5:\)trạng nguyên tiếng việt
Mik chỉ biết mấy cái này thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
ABCMD1342
a, Xét \(\Delta AMB\)và \(\Delta CMD\)có :
\(AM=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_3}\)( đối đỉnh )
\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)
b, Từ câu a, \(\Delta AMB=\Delta CMD\)
\(\Rightarrow\widehat{A_1}=\widehat{C_2}\)( 2 góc tương ứng )
Đt AC bị hai đường thẳng AB và CD cắt tạo thành \(\widehat{A_1}=\widehat{C_2}\)( 2 góc sl trong ) bằng nhau
=> AB // CD ( đpcm )
c, Xét \(\Delta DMA\)và \(\Delta BMC\)có :
\(MA=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_2}=\widehat{M_4}\)
\(\Rightarrow\Delta BMC=\Delta DMA\)
= > AD = BC
d, Từ câu b, \(\Delta DMA=\Delta BMC\)
\(\Rightarrow\widehat{A_2}=\widehat{C_1}\)( 2 góc t/ư )
Đt CA bị 2 đường thẳng AD và BC cắt tạo thành \(\widehat{A_2}=\widehat{C_1}\)( 2 góc sl trong ) bằng nhau
= > AD // BC ( đpcm )