P = \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x+x\sqrt{x}}\right)\)
a, Rút gọn P
b, Tìm giá trị của P khi x = \(\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)
c, Khi\(\sqrt{P}\)có nghĩa, hãy tìm giá trị nhỏ nhất của \(\sqrt{P}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)
b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
vậy \(P=\frac{4}{\sqrt{4}-1}=4\)
c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)
vậy \(\sqrt{P}\ge2\)