Cho tam giác ABC vuông A. Gọi M là điểm nằm giữa B và C. Kẻ MN vuông góc AB, MP vuông góc AC ( N thuộc AB, P thuộc AC).
a) Tứ giác ANMP là hình gì?
b) Tính góc NHP.
c) Tìm vị trí M trên BC để NP có độ dài ngắn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này tương đương với: tìm số dư khi chia \(F_{24}=2^{2^{24}}+1chia10^5\)
Ta có nhận xét:
1) \(2^{2^{n+1}}=2^{2^n}\times2^{2^n}\)
2) \(2^{2^n}\equiv a\left(mod10^5\right)\Rightarrow2^{2^{n+1}}\equiv a^2\left(mod10^5\right)\)
Từ đây ta có thể tính đồng dư của \(2^{2^n}theo\left(mod10^5\right)\) như sau (tính máy tính)
\(2^{2^1}\equiv4\) , \(2^{2^2}\equiv16\) , , \(2^{2^3}\equiv256\)
\(2^{2^4}\equiv65536\) , ....... , \(2^{2^{24}}\equiv97536\)
Vậy \(F_{24}=2^{2^{24}}+1=97536+1\). Năm chữ số cuối cùng \(F_{24}=2^{2^{24}}+1\) là 97537
(CHÚ THÍCH : mod là phép chia lấy phần dư ví dụ Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, ta có thể viết 5\(\equiv\)1mod2 )
CHO CHỊ XIN 1TÍCH NHA :))
Bài toán này tương đương với: tìm số dư khi chia F_{24}=2^{2^{24}}+1chia10^5F24=2224+1chia105
Ta có nhận xét:
1) 2^{2^{n+1}}=2^{2^n}\times2^{2^n}22n+1=22n×22n
2) 2^{2^n}\equiv a\left(mod10^5\right)\Rightarrow2^{2^{n+1}}\equiv a^2\left(mod10^5\right)22n≡a(mod105)⇒22n+1≡a2(mod105)
Từ đây ta có thể tính đồng dư của 2^{2^n}theo\left(mod10^5\right)22ntheo(mod105) như sau (tính máy tính)
2^{2^1}\equiv4221≡4 , 2^{2^2}\equiv16222≡16 , , 2^{2^3}\equiv256223≡256
2^{2^4}\equiv65536224≡65536 , ....... , 2^{2^{24}}\equiv975362224≡97536
Vậy F_{24}=2^{2^{24}}+1=97536+1F24=2224+1=97536+1. Năm chữ số cuối cùng F_{24}=2^{2^{24}}+1F24=2224+1 là 97537
(CHÚ THÍCH : mod là phép chia lấy phần dư ví dụ Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, ta có thể viết 5\equiv≡1mod2 )
CHO CHỊ XIN 1TÍCH NHA :))
Em sẽ sử dụng máy tính casio và nhập biểu thức sau:
$(2^{24}+1)$ : R$10^5$, ta sẽ được kết quả $167$,R = $77217$ nên năm chữ số tận cùng bên phải là $77217$.
Để bấm được ": R", con bấm tổ hợp phím này nhé.