(1,5 điểm)
a. Viết công thức tính điện trở tương đương của đoạn mạch gồm hai điện trở mắc nối tiếp.
b. Cho hai điện trở R1 = 10 Ω, R2 = 20 Ω mắc nối tiếp. Vẽ sơ đồ mạch điện. Tính điện trở tương đương của đoạn mạch.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a)
CnH2n+2 + O2 → nCO2 + (n+1)H2O (1)
CnH2n + O2 → nCO2 + nH2O (2)
CmH2m + O2 → mCO2 + mH2O (3)
Ta thấy khi đốt B và C số mol CO2 thu được bằng số mol H2O
=> Tổng số mol H2O - tổng số mol CO2 = nA
<=> \(\dfrac{19,8}{18}-\dfrac{44}{44}\)= 0,1 = nA
=> %VA =\(\dfrac{0,1}{0,4}\).100%= 25%
b) Số nguyên tử C trung bình = \(\dfrac{nCO2}{nX}\)= 2,5
Mà n < m => n = 2
CTPT của A là C2H6 , của B là C2H4
c) Ta có m hỗn hợp X = mC + mH = 1.12 + 1,1.2 = 14,2 gam
=> mC(CmH2m) = mX.39,43% = 5,6 gam
=> mB = mX - mA - mC = 14,2 - 0,1.30 - 5,6 = 5,6 gam
=> nB =\(\dfrac{5,6}{28}\)= 0,2 mol
Mà nX = 0,4 => nC = 0,4 - nA - nB = 0,4 - 0,1 - 0,2 = 0,1 mol
<=> MC = \(\dfrac{5,6}{0,1}\) 56 (g/mol)
=> 12m + 2m =56 <=> m = 4
Vậy CTPT của C là C4H8
Ta có : Hệ \(\hept{\begin{cases}x^3+xy^2-10y=0\\x^2+6y^2=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x^2+y^2\right)-10y=0\\x^2+6y^2=10\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x\left(10-6y^2+y^2\right)-10y=0\\x^2=10-6y^2\end{cases}\Leftrightarrow\hept{\begin{cases}2x-xy^2-2y=0\\x^2=10-6y^2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2y}{2-y^2}\\x^2=10-6y^2\end{cases}}\)(1)
Với y = \(\pm\sqrt{2}\)=> \(∄\)x thỏa mãn hệ
=> y \(\ne\pm\sqrt{2}\)
Khi đó hệ (1) <=> \(\hept{\begin{cases}\left(\frac{2y}{2-y^2}\right)^2=10-6y^2\\x^2=10-6y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}6y^6-34y^4+68y^2-40=0\left(2\right)\\x^2=10-6y^2\left(^∗\right)\end{cases}}\)
Đặt t = y2 \(\ge0\)
Khi đó (2) <=> 6t3 - 34t2 + 68t - 40 = 0
<=> 3t3 - 17t2 + 34t - 20 = 0
<=> (3t3 - 3) - 17(t2 - 2t + 1) = 0
<=> 3(t - 1)(t2 + t + 1) - 17(t - 1)2 = 0
<=> (t - 1)(3t2 - 14t + 20) = 0
<=> t - 1 = 0 (Vì 3t2 - 14t + 20 > 0 \(\forall t\))
<=> t = 1
Khi đó y2 = 1 <=> y = \(\pm1\)
Thay y = \(\pm1\)vào (*)
=> x2 = 10 - 6y2 = 10 - 6 = 4 <=> x = \(\pm2\)
Vậy hệ có 4 nghiệm (2 ; 1) ; (2 ; - 1) ; (-2 ; - 1) ; (-2 ; 1)
\(\Rightarrow x^3+xy^2-\left(x^2+6y^2\right)y=0\)
\(\Leftrightarrow x^3-x^2y+xy^2-6y^3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x^2+xy+3y^2\right)=0\)
\(\Rightarrow x=2y\)
Thế vào \(x^2+6y^2=10\)
\(\Rightarrow10y^2=10\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)
Cách 1:
Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow3=ab+bc+ca\le3ab\Rightarrow ab\ge1\)
Ta có:
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\)
\(\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{1+ab}\)
\(\Rightarrow VT\ge\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\ge\dfrac{3}{2}\Leftrightarrow c^2+3-ab\ge3abc^2\)
\(\Leftrightarrow c^2+ac+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\)
Đúng do \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{9}{ab+bc+ca}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cách 2:
\(\Leftrightarrow1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{3a^2}{3a^2+3}+\dfrac{3b^2}{3b^2+3}+\dfrac{3c^2}{3c^2+3}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{3a^2}{2a^2+a^2+ab+bc+ca}+\dfrac{3b^2}{2b^2+b^2+ab+bc+ca}+\dfrac{3c^2}{2c^2+c^2+ab+bc+ca}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}+\dfrac{b^2}{b\left(a+b+c\right)+2b^2+ac}+\dfrac{c^2}{c\left(a+b+c\right)+2c^2+ab}\le\dfrac{1}{2}\)
Ta có:
\(\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}\le\dfrac{1}{4}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)
Tương tự và cộng lại:
\(VT\le\dfrac{1}{4}\left(1+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)
Nên ta chỉ cần chứng minh:
\(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)
\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)
\(\Leftrightarrow\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\ge1\)
Đúng do:
\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)
Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.
Đoạn mạch gồm hai điện trở R1 và R2 mắc nối tiếp: RTD=R1+R2
b. RTĐ= 10+20=30 ôm
a. Đoạn mạch gồm hai điện trở R1 và R2 mắc nối tiếp: RTD=R1+R2
b. Đoạn mạch gồm hai điện trở R1 và R2 mắc nối tiếp: RTD=R1+R2=10+20=30 ôm