K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
24 tháng 8 2021

\(a.\left(x^2+2x+x+2\right)\left(x^2+5x+6x+30\right)-5\)

\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+6\right)-5=\left(x^2+7x+6\right)\left(x^2+7x+10\right)\)

Đặt \(x^2+7x+8=a\Rightarrow\text{Biểu thức }=\left(a-2\right)\left(a+2\right)-5=a^2-9=\left(a-3\right)\left(a+3\right)\)

nên : \(BT=\left(x^2+7x+5\right)\left(x^2+7x+11\right)\)

b.\(BT=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

Đặt \(x^2+5ax+5a^2=y\Rightarrow BT=\left(y-a^2\right)\left(y+a^2\right)+a^4=y^2=\left(x^2+5ax+5a^2\right)^2\)

a) \(A=4x^2+3y^2-8x+11=\left(4x^2-8x+4\right)+3y^2+7\)

\(A=4\left(x-1\right)^2+3y^2+7\ge7\Rightarrow minA=7\)

b) \(B=\left(x-2y-4\right)^2+4xy+34=x^2+4y^2-8x+16y+34+16\)

\(B=\left(x^2-8x+16\right)+\left(4y^2+16y+16\right)+18\)

\(B=\left(x-4\right)^2+4\left(y+2\right)^2+18\ge18\Rightarrow minB=18\)

c) \(C=9x^2+y^2-6x+4y-24=\left(9x^2-6x+1\right)+\left(y^2+4y+4\right)-29\)

\(\left(3x-1\right)^2+\left(y+2\right)^2-29\ge-29\Rightarrow minC=-29\)

d) \(D=\left(2x-5y\right)^2+20xy-8x+10y-121\)

\(D=4x^2-20xy+25y^2+20xy-8x+10y-121\)

\(D=\left(4x^2-8x+4\right)+\left(25y^2+10y+1\right)-126\)

\(D=4\left(x-1\right)^2+\left(5y+1\right)^2-126\ge-126\Rightarrow minD=-126\)

24 tháng 8 2021

Trả lời:

a, \(2x-1\ge1\)

\(\Leftrightarrow2x\ge2\)

\(\Leftrightarrow x\ge1\)

Vậy \(x\ge1\) là nghiệm của pt.

0 x 1

b, \(3x-2\ge1\)

\(\Leftrightarrow3x\ge3\)

\(\Leftrightarrow x\ge1\)

Vậy \(x\ge1\) là nghiệm của pt.

( biểu diễn giống ý trên )

c, \(2-2x< 3\)

\(\Leftrightarrow-2x< 1\)

\(\Leftrightarrow x>-\frac{1}{2}\)

Vậy \(x>-\frac{1}{2}\) là nghiệm của pt.

0 x -1/2

d, \(4-3x< 5\)

\(\Leftrightarrow-3x< 1\)

\(\Leftrightarrow x>-\frac{1}{3}\)

Vậy \(x>-\frac{1}{3}\) là nghiệm của pt.

0 x -1/3

23 tháng 8 2021

\(a,VT=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(VT+3=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}\)

\(VT+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(VT+3=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(2\left(VT+3\right)=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

áp dụng bđt Cô si :

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{a+b}\cdot\frac{1}{b+c}\cdot\frac{1}{c+a}}\)

\(\Rightarrow2\left(VT+3\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Rightarrow2\left(VT+3\right)\ge9\) \(\Leftrightarrow VT\ge\frac{3}{2}\)

23 tháng 8 2021

chưa có dấu = xảy ra kìa, khi a=b=c > 0

\(b,\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{a\left(b+2c\right)}+\frac{b^2}{b\left(c+2a\right)}+\frac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow vt\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

nên \(vt\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+cb+ca\right)}=1\)

dấu = xảy ra khi a=b=c

NM
23 tháng 8 2021

a.\(4xy-8x^3y=4xy\left(1-2x^2\right)\)

b.\(5\left(x^2-y^2\right)+16\left(x-y\right)=\left(x-y\right)\left[5\left(x+y\right)+16\right]\)

c.\(x^3-4x^2y+4xy^3=x\left(x-2y\right)^2\)

d.\(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)

e.\(x^2y-2x^2+4y-8=\left(y-2\right)\left(x^2+4\right)\)

g. \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

A = (2x –3)2+ (x –1)(x + 1)​

A = 5x^2-12x+8

rút gọn rồi vì ko biết đề bài 

nha bạn chúc bạn học tốt nha 

DD
23 tháng 8 2021

Ta có: 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+ab+bc+ca}\ge\frac{9}{2\left(a^2+b^2+c^2\right)}=\frac{9}{2}\)

Dấu \(=\)khi \(a=b=c=\frac{1}{\sqrt{3}}\)

24 tháng 8 2021

Trước tiên ta xét bđt phụ : a2 + b2 + c2 ≥ ab + bc + ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 *đúng* . Dấu "=" <=> a=b=c

Áp dụng bđt Cauchy-Schwarz dạng Engel và bđt phụ trên : \(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+ab+bc+ca}\ge\frac{9}{2\left(a^2+b^2+c^2\right)}=\frac{9}{2\cdot1}=2\)

=> đpcm . Dấu "=" xảy ra <=> a=b=c=1/√3

NM
24 tháng 8 2021

ta có :

\(3^{75}+2^{100}=27^{25}+16^{25}\)chia hết cho \(27+16=43\)

vậy ta có đpcm

23 tháng 8 2021

\(E=4x^4+52x^3+171x^2+13x-30\)

\(E=4x^4+24x^3+28x^3+168x^2+3x^2+18x-5x-30\)

\(E=4x^3\left(x+6\right)+28x^2\left(x+6\right)+3x\left(x+6\right)-5\left(x+6\right)\)

\(E=\left(4x^3+28x^2+3x-5\right)\left(x+6\right)\)

\(E=\left(4x^3+2x^2+26x^2+13x-10x-5\right)\left(x+6\right)\)

\(E=\left[2x^2\left(2x+1\right)+13x\left(2x+1\right)-5\left(2x+1\right)\right]\left(x+6\right)\)

\(E=\left(2x^2+13x-5\right)\left(2x+1\right)\left(x+6\right)\)

23 tháng 8 2021

\(D=4\left(x^2+11x+30\right)\left(x^2+22x+120\right)-3x^2\)

\(D=4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)

\(D=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)

đặt \(x^2+17x+60=a\)

\(D=4\left(a-x\right)a-3x^2\)

\(D=4a^2-4ax-3x^2\)

đến đây bí