Cho tam giác ABC cân tại A ( góc A < 90 độ) có AM là đường phân giác
a) Cm: \(\Delta MAB=\Delta MAC\)
b) Đường cao BE của tam giác ABC cắt AM tại H. Cmr: CH vuông góc với AB
c) Trên cạnh AB lấy điểm O sao cho AO = AE. Cmr: C, H, O thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) có 1 nghiệm là -1 nên P(-1) = 0
P(-1) = (-2).(-1)2 + m.(-1) - 7m + 3 = 1 - 8m
=> 1 - 8m = 0 <=> m = 1/8
b) Q (x) = 0 <=> 3x2 - 10x + 3 = 0
<=> 3x2 - 9x - x + 3 = 0
<=> (3x2 - 9x) - (x - 3) = 0
<=> 3x(x - 3) - (x - 3) = 0
<=> (x - 3)(3x - 1) = 0
<=> x - 3 = 0 hoặc 3x - 1 = 0
=> x = 3 hoặc x = 1/3
Vậy....
nhầm đoạn cuối 54/-7 = -54/7
=> x= -216/7 ; y=-324/7 ; z= -270/7
\(\left(3x-2y\right)^{2014}\ge0\) ; \(\left|5y-6z\right|^{2015}\ge0\)
\(\Rightarrow\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}\ge0\)
mà \(\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}=0\)
\(\Rightarrow\left(3x-2y\right)^{2014}=\left|5y-6z\right|^{2015}=0\Rightarrow3x-2y=5y-6z=0\)
\(\Rightarrow3x=2y;5y=6z\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\left(1\right)\)
\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{54}{-7}=-\frac{7}{54}\) [áp dụng dãy tỉ số bằng nhau]
=> x= -14/27 ; y= -7/9 ; z= -35/51
Giang ho dai ca viet nham nhé:
\(5.3^x=8.3^9+7.27^3\)
<=> \(5.3^x=8.3^9+7.\left(3^3\right)^3\) <=> \(5.3^x=8.3^9+7.3^9\)
<=> \(5.3^x=15.3^9\) <=> \(3^x=3.3^9=3^{10}\) => x = 10
nhầm chỉnh lại :
\(5.3^x=8.3^9+7.27^3\Rightarrow5.3^x=8.3^9+7.3^9=15.3^9\Rightarrow15.3^{x-1}=15.3^9\Rightarrow3^{x-1}=3^9\Rightarrow x-1=9\Rightarrow x=10\)
Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b khác 0. Tập hợp số hữu tỉ kí hiệu là Q.
cứ cộng 3 ô theo thẳng hình cột, ngang, chéo đều có tổng =-30
phải k?
Do A và E nhân được hai số trai dấu mà A nhận được số 1 => E nhận được số -1
Vậy tổng các số mà 5 bạn nhận được là:A+B+C+D+E = 1+1-1-1-1=-1
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}=\frac{14-6}{8}=1\)
=> x-1 = 2 ; y-2 = 3; z-3 = 4
=> x= 3 ; y= 5 ; z=7
Vậy x=3 ; y=5 ; z=7
đề phải là \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) chứ
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\Rightarrow bc-a^2=a^2-bc\)\(\Rightarrow bc=2a^2-bc\Rightarrow2a^2=2.bc\Rightarrow a^2=bc\)
a - b = 2(a + b) => a - b = 2a + 2b => a - 2a = b + 2b => -a = 3b
=> a:b = 3/-1 = -3 => a = -3b
Mà a - b = a:b = -3
=> -3b - b = -3 => -4b = -2 => b = 1/2 => a = (-3).1/2 = -3/2
Vậy b = 1/2 và a = -3/2
A B C M H E O
a) Xét tam giác MAB và MAC có:
AB = AC (tam giác ABC cân tại A)
Góc BAM = CAM (do AM là p/g của góc A)
Cạnh chung AM
=> tam giác MAB = MAC (c - g - c)
b) Tam giác ABC cân tại A có AM là p/g nên đông thời là đường cao
Có BE là đường cao
BE giao với AM tại H
=> H là trực tâm của tam giác ABC => CH vuông góc với AB
c) Xét tam giác AOH và AEH có:
AO = AE
góc OAH = HAE
cạnh chung AH
=> tam giác AOH = AEH (c- g- c)
=> góc AOH = AEH
mà góc AEH = 90 độ
=> góc AOH = 90 độ => AO vuông góc với OH hay AB vuông góc với OH
mà CH vuông góc với AB
=> OH trùng với CH => C; O; H thẳng hàng
a) vì AM là đường phân giác => góc BAM= góc CAM
Xét hai tam giác ABM và ACM có:
AB=AC( do tam giác ABC cân tại A=>AB=AC)
Góc BAM= góc CAM
cạnh AM chung
==>> tam giác ABM= tam giác ACM(c.g.c)
Mình chỉ c/m cho phần a thui,xin lỗi nha