(x+2)(x+3)(x+4)(x+5)-24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(VT=3+\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge3+\frac{\left(1+1+2\right)^2}{a+b+c}=3+16=19\)
Dấu "=" tự tìm nha b yeuuuuu
\(\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}=1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{4}{c}\)
Theo BĐT Cauchy Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=16\)
\(\Rightarrow\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}\ge16+3=19\)
Dấu ''='' xảy ra khi \(a=b=c=\frac{1}{3}\)
a,\(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
\(< =>x^2+6x+9+x^2-4x+4=2x^2\)
\(< =>2x+13=0< =>x=-\frac{13}{2}\)
b,\(5x\left(x-2\right)=x-2< =>\left(x-2\right)\left(5x-1\right)=0< =>\hept{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
\(\Leftrightarrow x^2+6x+9+x^2-4x+4-2x^2=0\)
\(\Leftrightarrow2x+13=0\)
\(\Leftrightarrow2x=-13\)
\(\Leftrightarrow x=-\frac{13}{2}\)
Vậy \(S=\left\{-\frac{13}{2}\right\}\)
b) \(5x\left(x-2\right)=x-2\)
\(\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
Vậy \(S=\left\{2;\frac{1}{5}\right\}\)
a, \(5y^2-5x^2+6x+6y=5\left(y-x\right)\left(x+y\right)+6\left(x+y\right)\)
\(=\left(x+y\right)\left(5y-5x+6\right)\)
b, \(12x^2+19x+7=12x^2+12x+7x+7\)
\(=12x\left(x+1\right)+7\left(x+1\right)=\left(12x+7\right)\left(x+1\right)\)
mik ko nhìn thấy đa thức đâu bạn ơiiiiiiiiiiiiiiiiiiiiiiii
\(\left(x-2\right)^2-x\left(x-1\right)\left(x+1\right)+x\left(7x-6\right)=0\)
\(\Leftrightarrow x^2-4x+4-x\left(x^2-1\right)+7x^2-6x=0\)
\(\Leftrightarrow8x^2-10x+4-x^3+x=0\Leftrightarrow-x^3+8x^2-9x+4=0\Leftrightarrow x=6,7...\)
\(\left(x-2\right)^2-x\left(x-1\right)\left(x+1\right)+x\left(7x-6\right)=0\)
\(\Leftrightarrow x^2-4x+4-x^3-x^2+x^2+x+7x^2-6x=0\)
\(\Leftrightarrow-x^3-8x^2-9x+4=0\)
Làm tiếp nhé =))
\(a,\)\(x^2+2x-15=0\Rightarrow\left(x+1\right)^2-16=0\Rightarrow\left(x+1\right)^2=16\)
\(\hept{\begin{cases}x+1=4\\x+1=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=-5\end{cases}}\)\(\)vậy \(S=\left\{3;-5\right\}\)
\(b,\)\(2x^2-7x+6=0\Rightarrow2x\left(x-1\right)-5\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2x-5\right)=-1=1.-1=-1.1\)
\(x-1=1;2x-5=-1\)và \(x-1=-1;2x-5=1\)
\(\Rightarrow x=2\)và\(x=0;x=3\)vậy \(S=\left\{2;0;3\right\}\)
Mình làm nốt nhé
c) \(x^3-4x^2+5x=x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x\left(x^2-4x+4+1\right)=0=x\left[\left(x-2\right)^2+1\right]=0\)
Vì \(\left(x-2\right)^2+1>0\forall x\Leftrightarrow x=0\)
d) \(x^3+5x^2+3x-9=0\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+1\right)^2-4\right]=\left(x+3\right)\left(x+1-2\right)\left(x+1+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
Tự KL
x3 + 9x = 0 <=> x( x2 + 9 ) = 0 <=> x = 0 ( vì x2 + 9 > 0 )
Vậy pt có nghiệm x = 0
a) 5x2 -20
= 5(x2 -4)
=5 (x2 -22)
= 5(x-2)(x+2)
b) 16 - (x+y)2
=42 -(x+y)2
= (4-x-y)(4+x+y)
a, \(5\left(x^2-4\right)=5\left(x-2\right)\left(x+2\right)\)
b, \(16-\left(x+y\right)^2=\left(4-x-y\right)\left(4+x+y\right)\)
mấy bài này áp dụng hđt là được nhé
đề là ptđt thành nhân tử hả bạn ?
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=t\)
\(t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
Theo cách đặt : \(\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t\)
\(\Rightarrow\left(t+1\right)\left(t-1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(\Rightarrow\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)