Cho tam giác ABC có góc B= 62 độ, C=46 độ, BC=10cm. a) Tính AB, AC b) Tính diện tích tam giác ABC
Giúp mình với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou
hộ mình với:(
Bài 4 :
a, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=16\Rightarrow AB=4\)cm
Theo định lí Ptago : \(AC=\sqrt{BC^2-AB^2}=\sqrt{64-16}=4\sqrt{3}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{16\sqrt{3}}{8}=2\sqrt{3}\)cm
b, Xét tam giác ABK vuông tại A, đường cao AD
\(AB^2=BD.BK\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
\(AB^2=BH.BC\)( hệ thức lượng ) (2)
Từ (1) ; (2) => \(BD.BK=BH.BC\)(3)
c, Xét tam giác BHD và tam giác BKC
^B _ chung
(3) => \(BD.BK=BH.BC\Rightarrow\frac{BD}{BC}=\frac{BH}{BK}\)
Vậy tam giác BHD ~ tam giác BKC ( c.g.c )
=> \(\frac{S_{BHD}}{S_{BKC}}=\left(\frac{BD}{BC}\right)^2\)(4)
Ta có : cosABD = \(\frac{DB}{AB}\)
=> cos2ABD = \(\left(\frac{DB}{AB}\right)^2\)=> cos2ABD = \(\frac{DB^2}{AB^2}=\frac{DB^2}{16}\)
=> \(\frac{1}{4}cos^2\widehat{ABD}=\frac{DB^2}{64}=\frac{DB^2}{8^2}=\frac{DB^2}{BC^2}=\left(\frac{DB}{BC}\right)^2\)
\(\Rightarrow\frac{1}{4}cos^2\widehat{ABD}=\frac{S_{BHD}}{S_{BKC}}\)theo (4)
=> \(S_{BHD}=S_{BKC}.\frac{1}{4}cos^2\widehat{ABD}\)
Bài 3 :
a, Với \(x>0;x\ne1\)
\(A=\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)
\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right):\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b, Ta có : \(A=\frac{5}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{3}\Rightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow6=2\sqrt{x}\Leftrightarrow x=9\)
a)\(\sqrt{81}-\sqrt{80}\)\(.\sqrt{0,2}\)\(=\sqrt{9^2}-\sqrt{80.0,2}\)\(=9-\sqrt{16}\)\(=9-4=5\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}\)\(-\frac{1}{2}.\sqrt{20}\)\(=|2-\sqrt{5}|-\frac{1}{2}.\sqrt{4.5}\)\(=2-\sqrt{5}-\frac{1}{2}.2\sqrt{5}\)
\(=2-\sqrt{5}-\sqrt{5}=2\)
Tôi lm đc đến đây thôi(@_@)
\(\)
a, \(\sqrt{x-6}=13\)ĐK : x >= 6
\(\Leftrightarrow x-6=169\Leftrightarrow x=175\)
b, \(\sqrt{x^2-2x+4}=x-1\Leftrightarrow x^2-2x+4=x^2-2x+1\)
\(\Leftrightarrow4=1\)( vô lí ), vậy pt vô nghiệm
c, \(\sqrt{x^2-8x+16}=9x-1\Leftrightarrow\left|x-4\right|=9x-1\)
ĐK : x >= 1/9
TH1 : \(x-4=9x-1\Leftrightarrow-8x=3\Leftrightarrow x=-\frac{3}{8}\)( ktm )
TH2 : \(x-4=1-9x\Leftrightarrow10x=5\Leftrightarrow x=\frac{1}{2}\)( tm )
c, \(\sqrt{x^2-x-4}=\sqrt{x-1}\Leftrightarrow x^2-x-4=x-1\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x=3;x=-1\)
e, \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
TH1 : \(x-2=2x-3\Leftrightarrow x=1\)
TH2 : \(x-2=3-2x\Leftrightarrow3x=5\Leftrightarrow x=\frac{5}{3}\)
g, \(\sqrt{x+2\sqrt{x-1}}=2\)ĐK : x > = 1
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
TH1 : \(\sqrt{x-1}+1=2\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
TH2 : \(\sqrt{x-1}+1=-2\)( vô lí )
:>>>>>>>>>