Mn giúp mk bài này vs:
Rút gọn: F=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)-\(\frac{4}{\sqrt{x}+2}\)-\(\frac{8}{x-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x càng lớn thì biểu thức càng lớn nên cái này k có max bạn nhé
Ta có: 5^2n-25=25^n-25
=(...25)-25=(...00) chia hết cho 100 nha
5^2n - 25 : 100
= 25^n - 25
= (.....25)-25 =(.....00) chia hết cho 100 nha bạn
chúc bạn học tốt ạ
Hạ \(DH\perp AB,CK\perp AB\).
Tam giác \(AHD\)vuông tại \(H\)có\(\widehat{ADH}=30^o\)nên \(AH=\frac{1}{2}AD=1\left(cm\right)\)
\(HD=\sqrt{AD^2-AH^2}=\sqrt{2^2-1^2}=\sqrt{3}\left(cm\right)\)
Tương tự \(BK=1\left(cm\right)\).
\(DC=HK=AB-AH-BK=2,5\left(cm\right)\)
\(S_{ABCD}=\frac{AB+CD}{2}.DH=\frac{4,5+2,5}{2}.\sqrt{3}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
\(\sqrt{a}+\sqrt{b}=m\Leftrightarrow m-\sqrt{a}=\sqrt{b}\Rightarrow m^2-2m\sqrt{a}+a=b\)
\(\Leftrightarrow\sqrt{a}=\frac{m^2+a-b}{2m}\)là số hữu tỉ.
Tương tự cũng suy ra \(\sqrt{b}\)là số hữu tỉ.
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(< =>x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(< =>\left(x^2-1\right)\left(x^2+4\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)=0\)(vì x2 + 4 > 0)
\(< =>\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Trả lời:
Câu 1:
a, \(\left(5x+1\right)\left(2x-3\right)-\left(7x-2\right)\left(x+3\right)+5\)
\(=10x^2-15x+2x-3-\left(7x^2+21x-2x-6\right)+5\)
\(=10x^2-13x-3-7x^2-21x+2x+6+5\)
\(=3x^2-32x+8\)
b, \(\left(3x-2\right)^2+\left(2x+5\right)^2-\left(3x+4\right)\left(3x-4\right)\)
\(=9x^2-12x+4+4x^2+20x+25-9x^2+16\)
\(=4x^2+8x+45\)
c, \(\left(3x+2\right)\left(9x^2-6x+4\right)+\left(5-3x\right)\left(25+15x+9x^2\right)-9\)
\(=27x^3+8+125-27x^3-9\)
\(=124\)
d, \(\left(x-3\right)^3-\left(x+2\right)\left(x-2\right)\left(x-1\right)\)
\(=x^3-9x^2+27x-27-\left(x^2-4\right)\left(x-1\right)\)
\(=x^3-9x^2+27x-27-\left(x^3-x^2-4x+4\right)\)
\(=x^3-9x^2+27x-27-x^3+x^2+4x-4\)
\(=-8x^2+31x-31\)
e, \(\left(x+2y\right)^3-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+6x^2y+12xy^2+8y^3-\left(8x^3-y^3\right)\)
\(=x^3+6x^2y+12xy^2+8y^3-8x^3+y^3\)
\(=-7x^3+9y^3+6x^2y+12xy^2\)
f, \(\left(x-3y\right)^3-\left(2x-y\right)\left(3x+2y\right)\left(3x-2y\right)\)
\(=x^3-9x^2y+27xy^2-\left(2x-y\right)\left(9x^2-4y^2\right)\)
\(=x^3-9x^2y+27xy^2-27y^3-\left(18x^3-8xy^2-9x^2y+4y^3\right)\)
\(=x^3-9x^2y+27xy^2-27y^3-18x^3+8xy^2+9x^2y-4y^3\)
\(=-17x^3-31y^3+35xy^2\)
Câu 2 : a ) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=-13x=26\Leftrightarrow x=-2\)
b) \(\left(3x+1\right)^2+\left(2x-5\right)^2=13\left(x+2\right)\left(x-2\right)\)
\(\Leftrightarrow9x^2+6x+1+4x^2-20x+25=13\left(x^2-4\right)\)
\(\Leftrightarrow13x^2-14x+26=13x^2-52\Leftrightarrow13x^2-14x+26-13x^2+52=0\)
\(\Leftrightarrow78-14x=0\Leftrightarrow78=14x\Leftrightarrow x=\frac{78}{14}=\frac{39}{7}\)
Sửa đề: (x-3)(x2 + 3x+9) - x(x-4)(x+4)=2
<=> (x3 - 33) - x(x2 - 42) =2
<=> x3 -27 - x3 + 16x =2
<=> 16x = 2 + 27
<=> 16x = 29
<=> x = 29/16
Vậy x = 29/16
( x - 3 )( x2 + 3x + 9 ) + x( x - 4 )( x + 4 ) = 2
<=> x3 - 27 + x( x2 - 4 ) - 2 = 0
<=> x3 - 27 + x3 - 4x - 2 = 0
<=> 2x3 - 4x - 29 = 0
đến đây chịu:)
ĐK : x >= 0 ; x khác 4
\(F=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}-4\sqrt{x}+8-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}+2}\)