a, (-3x+2y)2
b, (-x-xy)2
c, (x+y)2-(2-y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai thi thong cam ...
\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3yz+3xz^2+3yx^2+3zx^2+3xy^2+3xyz+3zy^2+3yz^2\)
\(\Leftrightarrow\left(x+y+z\right)^3=x^3+3x^2y+3y^2x+y^3+3x^2z+6xyz+3y^2z+3xz^2+z^3\)
\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y\right)^3+3z\left(x+y\right)^2+3z^2\left(x+y\right)+z^3\)
\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y+z\right)^3\)
\(E=-3x^2-6x+5\)
\(=-3\left(x^2+2x-\frac{5}{3}\right)\)
\(=-3\left(x^2+2x+1\right)+8\)
\(=-3\left(x+1\right)^2+8\le8\forall x\)
Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)
\(=-3\left(x+1\right)^2+8\le8\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN của E bằng 8 tại x = -1
Diện tích phần thứ ba là:
\(864\div3\times2=576\)(m2)
Diện tích hai phần còn lại là:
\(864-576=288\)(m2)
Diện tích phần thứ nhất là:
\(288\div\left(11+5\right)\times5=90\)(m2)
Diện tích phần thứ hai là:
\(288-90=198\)(m2)
=> Thử lại:
\(576+90+198=864\)
cho tứ giác abcd, có lần lượt m, n, p là trung điểm của ad, bc, ac. CMR MN nhỏ hơn hoặc bằng AB+CD/2
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)
\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)
\(=-3x^2-14x-3\)
\(=-3\left(x^2+\frac{14}{3}x+\frac{49}{9}\right)+\frac{40}{3}\)
\(=-3\left(x+\frac{7}{3}\right)^2\le0\forall x\)
Dau '' = '' xay ra \(\Leftrightarrow x=\frac{-7}{3}\)
\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)
\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)
\(=-3x^2-14x-3=-3\left(x^2+\frac{14}{3}x\right)-3\)
\(=-3\left(x^2+2.\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}\right)-3\)
\(=-3\left(x+\frac{7}{3}\right)^2+\frac{40}{3}\le\frac{40}{3}\)
Dấu ''='' xảy ra khi x = -7/3
Vậy GTLN của F bằng 40/3 tại x = -7/3
\(A=x^2+2x+9y^2-6y+2018\)
\(=x^2+2x+1+9y^2-6y+1+2016\)
\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)
Dấu ''='' xảy ra khi x = -1 ; y = 1/3
Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3
a) (-3x+ 2y)2
= (-3x)2 + 2.(-3x).2y + (2y)2
= 9x2 - 12xy + 4y2
b) (-x - xy)2
= (-x)2 - 2(-x). xy + (xy)2
= x2 + 2x2y + x2y2
c) (x+ y)2 - (2-y)2
= (x+y - 2 +y)( x+ y + 2-y)
= (x +2y-2)(x+2)
= x2 + 2x + 2xy + 4y - 2x -4
= x2 + 2xy + 4y -4