tìm x y z biết 2x+1=3y+3=5z+3 và x-y+z =1,1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x+1):2=(y-2):3=(z-1):5
hay \(\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-1}{5}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{\left(x+1\right)-\left(y-2\right)+\left(z-1\right)}{2-3+5}=\frac{x+1-y+2+z-1}{4}=\frac{x-y+z+1+2-1}{4}\)
\(=\frac{14+2}{4}=4\)
suy ra:
\(\frac{x+1}{2}=4\Rightarrow x+1=8\Rightarrow x=7\)
\(\frac{y-2}{3}=4\Rightarrow y-1=12\Rightarrow y=13\)
\(\frac{z-1}{5}=4\Rightarrow z-1=20\Rightarrow z=21\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt 2x + 1 = 3y + 3 = 5z + 3 = k
=> x = \(\frac{k-1}{2}\); y = \(\frac{k-3}{3}\); z = \(\frac{k-3}{5}\)
=> x - y + z = \(\frac{k-1}{2}\)- \(\frac{k-3}{3}\) + \(\frac{k-3}{5}\) = \(\frac{15\left(k-1\right)-10\left(k-3\right)+6\left(k-3\right)}{30}=\frac{11k-3}{30}=1,1\)
=> 11k - 3 = 33 => k = \(\frac{36}{11}\)
=> x = \(\frac{25}{22}\); y = \(\frac{1}{11}\); z = \(\frac{3}{55}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bổ sung: Đối chiếu điều kiện của x > = 0 => x = 0; 1/2; 3/2 thỏa mãn
\(x=\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\)
\(pt\Leftrightarrow x\left|x^2-\frac{5}{4}\right|=x\Leftrightarrow x\left(\left|x^2-\frac{5}{4}\right|-1\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }x^2-\frac{5}{4}=1\text{ hoặc }x^2-\frac{5}{4}=-1\)
\(\Leftrightarrow x\in\left\{0;-\frac{3}{2};\frac{3}{2};-\frac{1}{2};\frac{1}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3n+2 -2n+2+3n-2n
= 3n.9-2n.4+3n-2n
=3n.10-2n.5
Xét 3n.10 chia hết cho 10
2n.5 chia hết cho 2 và 5 nên chia hết cho 10
=> 3n.10-2n.5 chia hết cho 10 =>đpm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) O A B C D
OB vuông góc với OD nên góc BOD = 90o
Vì OD và OA nằm ở 2 nửa mặt phẳng bờ là OB nên tia OB nằm giữa 2 tia OA và OD
=> góc AOB + BOD = AOD
=> góc AOD = 40o + 90o = 130o
OA và OC là 2 tia đối nhau nên góc COA = 180o và tia OD năm giữa 2 tia OA và OC
=> góc AOD + DOC = AOC
=> 130o + DOC = 180o => góc DOC = 180 - 130 = 30o
O C A B D
Vì tia OB; OD nằm 2 nửa mặt phẳng bở là OA nên tia Oa nằm giữa 2 tia OB và OD
=> góc BOD = góc BOA + AOD
=> 90o = 40o + AOD => góc AOD = 90 - 40 = 50o
VÌ tia OA và OC đối nhau nên góc AOC = 180o và tia OD nằm giữa 2 tia OA và OC
=> góc COD + DOA = COA
=> góc COD + 50o = 180o
=> góc COD = 180 - 50 = 130o
![](https://rs.olm.vn/images/avt/0.png?1311)
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
suy ra:
\(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
thay x=2k ; y=5k vào x.y=10 ta được:
2k.5k=10
10 .k2=10
k2=1
=>k=1 hoặc k=-1
với k=1 thì
x=2.1=2
y=5.1=5
với k=-1 thì
x=2.(-1)=-2
y=5.(-1)=-5
Ta có : x.y=10
\(\Rightarrow x.y=2.5\)
\(\frac{\Rightarrow y}{5}=\frac{2}{x}\)
Mà x/2 = y/5
\(\frac{\Rightarrow x}{2}=\frac{2}{x}\)\(\Rightarrow x.x=2.2=4\)
\(\Rightarrow x^2=4=2^2=\left(-2\right)^2\)
\(\Rightarrow x=2\)hoặc \(x=-2\)
Khi \(x=2\)thì y=10 :2 =5
Khi x=-2 thì y=10: -2=-5
Vậy: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)hoặc\(\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
Cảm ơn các bạn vì đã xem câu trả lời của mìnk . Tuy nó hơi dài nhưng chắc cũng dễ hiểu !!!!!!!
cách 2: 2x + 1 = 3y + 3= 5z + 3 => \(2.\left(x+\frac{1}{2}\right)=3.\left(y+1\right)=5.\left(z+\frac{3}{5}\right)\)
=> \(\frac{2.\left(x+\frac{1}{2}\right)}{30}=\frac{3\left(y+1\right)}{30}=\frac{5\left(z+\frac{3}{5}\right)}{30}\) => \(\frac{x+\frac{1}{2}}{15}=\frac{y+1}{10}=\frac{z+\frac{3}{5}}{6}\)
Áp dụng tc dãy tỉ số bằng nhau => \(\frac{x+\frac{1}{2}}{15}=\frac{y+1}{10}=\frac{z+\frac{3}{5}}{6}=\frac{x+\frac{1}{2}-y-1+z+\frac{3}{5}}{15-10+6}=\frac{1,1+\frac{1}{10}}{11}=\frac{6}{55}\)
=> \(x+\frac{1}{2}=\frac{6}{55}.15=\frac{18}{11}\Rightarrow x=\frac{25}{11}\)
tương tự, y = ...; z ...
có cách khác k
bảo t vs t sắp hok rùi