1 ô tô đi từ A tới B, nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm hơn 2h so với dự định, nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm hơn 1h so với dự định. Tính độ dài quãng đường AB và thời gian dự định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y}k;\frac{y}{z}k;\frac{z}{x}k\right)\) \(k\inℝ^+\)
Bất đẳng thức cần chứng minh tương đương:
\(\frac{1}{\frac{x}{y}k\left(\frac{y}{z}k+1\right)}+\frac{1}{\frac{y}{z}k\left(\frac{z}{x}k+1\right)}+\frac{1}{\frac{z}{x}k\left(\frac{x}{y}k+1\right)}\ge\frac{3}{\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\left(1+\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\right)}\)
\(\Leftrightarrow\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\ge\frac{3}{k\left(1+k\right)}\) (D)
Ta có: \(\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\)
\(=\frac{\left(yz\right)^2}{xyzk\left(yk+z\right)}+\frac{\left(zx\right)^2}{xyzk\left(zk+x\right)}+\frac{\left(xy\right)^2}{xyzk\left(xk+y\right)}\)
\(\ge\frac{\left(xy+yz+zx\right)^2}{xyzk\left(xk+yk+zk+x+y+z\right)}\) (Bất đẳng thức Bunyakovsky dạng phân thức)
\(\ge\frac{3\left(xyz^2+xy^2z+x^2yz\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3xyz\left(x+y+z\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3}{k\left(k+1\right)}\)
=> BĐT (D) đúng => đpcm
Dấu "=" xảy ra khi: \(a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}\)
\(=\frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}=...=\frac{\sqrt{6+3}}{2020}=\frac{3}{2020}\)
Lại có: \(0< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}\)
\(=\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}=...=\frac{\sqrt[3]{6+2}}{2020}=\frac{2}{2020}\)
\(\Rightarrow0+0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}+\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{3}{2020}+\frac{2}{2020}< 1\)
\(\Rightarrow0< A< 1\Rightarrow\left[A\right]=0\)
Vậy \(\left[A\right]=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tự vẽ
b) Ta có phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d) là:
2x2 = x + 3
<=> 2x2 - x - 3 = 0
Do a - b + c = 2 + 1 - 3 = 0
=> phương trình có 2 nghiệm phân biệt x1 = -1; x2 = 3/2
Với x = -1 => y = -1 + 3 = 2 => tọa độ giao điểm là (-1;2)
x = 3/2 => y = 3/2 + 3 = 9/2 => tọa độ giao điểm là (3/2; 9/2)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B = \sqrt {19 + 8\sqrt 3 } + \sqrt {19 - 8\sqrt 3 } \)
\(\begin{array}{l}B = \sqrt {{4^2} + 2.4.\sqrt 3 + {{\left( {\sqrt 3 } \right)}^2}} + \sqrt {{4^2} - 2.4.\sqrt 3 + {{\left( {\sqrt 3 } \right)}^2}} \\B = \sqrt {{{\left( {4 + \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {4 - \sqrt 3 } \right)}^2}} \\B = \left| {4 + \sqrt 3 } \right| + \left| {4 - \sqrt 3 } \right|\\B = 4 + \sqrt 3 + 4 - \sqrt 3 \,\,\left( {Do\,\,4 + \sqrt 3 > 0;\,\,4 - \sqrt 3 > 0} \right)\\B = 8\end{array}\)
Vậy \(B = 8\).
Gọi x ﴾km﴿ là độ dài quãng đường AB, y ﴾giờ﴿ là thời gian dự định đi đến B lúc đầu. (Điều kiện x > 0, y > 1)
Thời gian đi từ A đến B với vận tốc 35km là: x/35 = y + 2 => x = 35.(y + 2)
Thời gian đi từ A và B với vận tốc 50km là : x/50 = y ‐ 1 => x = 50.(y - 1)
Ta có hệ phương trình:
35.(y + 2) = 50.( y - 1)
=> 35y + 70 = 50y - 50
=> y = 8
=> x =35.( y + 2) = 35.10 = 350 (km)
Vậy quãng đường AB là 350km.
Thời gian dự định đi lúc đầu là 8h
Gọi quãng đường AB là x(x thuộc n*/km)
gọi thời gian dự định là y(thuộc n*/ h)
nếu ô tô đi với vận tốc 35km/h thì đến B muộn hơn 2h nên ta có : s/35 =y+2
<=> s=35(y+2) (1)
nếu ô tô đi với vt 50km/h ( trình bày như trên) từ đó ta có phương trình :35(y+2)=50(y-1)<=> y=8 thay y=8 vào (1) ta được : s=35(8+2)=350km vậy quãng đường AB là 350km ; thời gian dự kiến là 8h