Bài 19 (trang 15 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $\sqrt{0,36.a^2}$ với $a<0$ ; b) $\sqrt{a^4.(3-a)^2}$ với $a \ge 3$ ;
c) $\sqrt{27.48.(1-a)^2}$ với $a>1$ ; d) $\dfrac{1}{a-b}.\sqrt{a^4.(a-b)^2}$ với $a>b$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{7.63}\)=21
b)\(\sqrt{2,5.30.48}\)=60
c)\(\sqrt{0,4.6,4}\)=1,6
d)\(\sqrt{2,7.5.1,5}\)=4,5
a, \(\sqrt{0.09\cdot64=\sqrt{0.09}\cdot\sqrt{64}=0.3\cdot8=2.4}\)
b, \(\sqrt{2^4\cdot\left(-7\right)^2}=\sqrt{16\cdot49}=\sqrt{16}\cdot\sqrt{49}=4\cdot7=28\)
c, \(\sqrt{121\cdot360}=\sqrt{121\cdot36}=\sqrt{121}\cdot\sqrt{36}=11\cdot6=66\)
d, \(\sqrt{2^2\cdot3^4}=\sqrt{2^2}\cdot\sqrt{3^4}=2\cdot3^2=18\)
a)\(\sqrt{0,09}.\sqrt{64}\)=0,3.8=2,4
b)\(\sqrt{2^4}.\sqrt{\left(-7\right)^2}\)=4.7=28
c)\(\sqrt{121.36}\)=\(\sqrt{121}.\sqrt{36}\)=11.6=66
d)\(\sqrt{2^2}.\sqrt{3^4}\)=2.9=18
a) Δ' = b'2 - ac = [-(n-1)]2 - 2n + 3
= n2 - 2n + 1 - 2n + 3
= n2 - 4n + 4 = ( n - 2 )2 ≥ 0 ∀ n
hay pt luôn có nghiệm ∀ n (đpcm)
b) Theo Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2n-2\\x_1x_2=\frac{c}{a}=2n-3\end{cases}}\)
Khi đó P = x12 + x22 = ( x1 + x2 )2 - 2x1x2
= ( 2n - 2 )2 - 2( 2n - 3 )
= 4n2 - 8n + 4 - 4n + 6
= 4n2 - 12n + 10
= ( 2n - 3 )2 + 1 ≥ 1 ∀ n
Dấu "=" xảy ra <=> n = 3/2 . Vậy MinP = 1
\(\sqrt{x+17}+\sqrt{x}=17\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\left(\sqrt{x+17}-9\right)+\left(\sqrt{x}-8\right)=0\)
\(\Leftrightarrow\frac{x+17-81}{\sqrt{x+17}+9}+\frac{x-64}{\sqrt{x}+8}=0\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{\sqrt{x+17}+9}+\frac{1}{\sqrt{x}+8}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=64\left(tm\right)\\\frac{1}{\sqrt{x+17}+9}+\frac{1}{\sqrt{x}+8}=0\left(1\right)\end{cases}}\)
Vì \(x\ge0\Rightarrow\hept{\begin{cases}\sqrt{x+17}+9>0\\\sqrt{x}+8>0\end{cases}}\)
\(\Rightarrow VT_{\left(1\right)}>0\)
\(\Rightarrow pt\left(1\right)\)vô nghiệm.
Vậy pt có nghiệm x=64
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
Bạn học tốt nhé
a)0,6.a
b)\(a^2\).(a-3)
c)36.(a-1)
d)\(\dfrac{1.a^2}{a-b}\).(a-b)