Bài 28 (trang 18 SGK Toán 9 Tập 1)
Tính
a) $\sqrt{\dfrac{289}{25}}$ ; b) $\sqrt{2\dfrac{14}{25}}$ ;
c) $\sqrt{\dfrac{0,25}{9}}$ ; d) $\sqrt{\dfrac{8,1}{16}}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+b^2\ge2ab\).
\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).
\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).
\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).
\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).
\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).
Chứng minh tương tự, ta được:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)
Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).
Chứng minh tương tự, ta được:
\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).
\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).
\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).
\(\Leftrightarrow A\ge3\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).
Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).
Đặt nửa đường thẳng thuộc tiếp tuyến tại A về phía C là At
sđ\(\widehat{ABC}=\frac{1}{2}\) sđ cung AC (Góc nội tiếp đường tròn)
sđ\(\widehat{tAC}=\frac{1}{2}\) sđ cung AC (Góc tạo bởi tiếp tuyến và dây cung)
\(\Rightarrow\widehat{tAC}=\widehat{ABC}=60^o\)
Ta có : \(a^2+b^2\le\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)hay
\(A\ge\frac{1}{2}+\frac{\left(1+1\right)^2}{a^2+b^2}=\frac{1}{2}+\frac{4}{\frac{1}{2}}=\frac{1}{2}+8=\frac{17}{2}\)
Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)
ỏ thanks bro:33 dạo bỏ bê toán quá quên hết mấy bđt phụ, giờ toán tui gà wa hmu hmu :"((
a, \(\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}\)
b, \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)
c, \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\)
d, \(\sqrt{\frac{8,1}{16}}\)đề có sai ko cô ?
a) căn 289 / 225 = 17/15
b) căn 64/ 25 = 8/5
c) căn 0,25 / 9 = 1/6
d) căn 8,1 / 1,6 = 9/4