K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2024

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

Xét (O') có

ΔBAD nội tiếp

BD là đường kính

Do đó: ΔBAD vuông tại A

=>BA\(\perp\)AD tại A

Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A

nên C,A,D thẳng hàng

b: Gọi H là giao điểm của AB và O'O

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Ta có: O'A=O'B

=>O' nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra O'O là đường trung trực của AB

=>O'O\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)

nên ΔOBO' vuông tại B

Xét ΔOBO' vuông tại B có BH là đường cao

nên \(BH\cdot O'O=BO\cdot BO'\)

=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)

H là trung điểm của AB

=>\(AB=2\cdot2,4=4,8\left(cm\right)\)

O là trung điểm của BC

=>BC=2*BO=2*4=8(cm)

O' là trung điểm của BD

=>BD=2*BO'=2*3=6(cm)

ΔBCD vuông tại B

=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

CN
Cô Ngọc Anh
Giáo viên VIP
18 tháng 10 2024

a) Hai gene nằm trên 2 cặp NST khác nhau chứng tỏ chúng di truyền tuân theo QL PLĐL của Mendel.

KG thân cao (A-) quả tròn (B-): AABB, AABb, AaBB, AaBb

KG thân thấp (aa) quả bầu dục: aabb.

b) Cây AABB cho 1 giao tử AB.

Cây AABb cho 2 giao tử là AB và Ab.

Cây AaBB cho 2 giao tử là AB và aB.

Cây AaBb cho 4 giao tử là AB, Ab, aB, ab.

Cây aabb cho 1 giao tử ab.

Vậy với 1 cặp gene dị hợp sẽ cho 2 loại giao tử, còn 1 cặp đồng hợp cho 1 loại giao tử. → Với cơ thể có n cặp gene dị hợp sẽ có số loại giao tử = 2 x n.

c) - Để F1 100% thân cao, quả tròn thì cần chọn P đồng hợp trội hoàn (AA x AA) hoặc chỉ dị hợp 1 bên (AA x Aa) để không có cơ hội cho các allele lặn gặp nhau tạo thành kiểu gene đồng hợp lặn (aa). Khi đó P có những TH sau:

1. AABB x AABB

2. AABb x AABB

3. AaBB x AABB

4. AaBb x AABB

 - Để F1 phân li tỉ lệ KH là 9 : 3 : 3 : 1, tức kiểu hình đồng hợp lặn aabb chiếm 1/16 thì cơ thể P phải tạo giao tử ab chiếm tỉ lệ 1/4.

→ P có KG dị hợp 2 cặp gene (AaBb x AaBb)

- Để  F1 phân li tỉ lệ KH là 1 : 1 : 1 : 1 thì 1 cây phải dị hợp 2 cặp gene và lai phân tích (1 cây tạo giao tử ab chiếm tỉ lệ 1/4, cây còn lại tạo giao tử ab với tỉ lệ là 1): AaBb x aabb.

- Để  F1 phân li tỉ lệ KH là 1 : 1 thì cây P chỉ có 1 tính trạng là lai phân tích để cho tỉ lệ 1 : 1 (VD: Aa x aa), tính trạng còn lại là phép lai cho kết quả tỉ lệ 100% đồng tính, tức P có thể có KG đồng hợp trội hoặc đồng hợp lặn (VD: AA x AA, AA x Aa, aa x aa).

VD: AABb x AAbb, AaBB x aabb,...

15 tháng 10 2024

a: \(\left(\sqrt{\dfrac{4}{3}}+\sqrt{3}\right)\cdot\sqrt{6}\)

\(=\sqrt{\dfrac{4}{3}\cdot6}+\sqrt{3\cdot6}\)

\(=\sqrt{8}+\sqrt{18}=2\sqrt{2}+3\sqrt{2}=5\sqrt{2}\)

b: \(\left(1-2\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)

\(=\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot1+1\)

\(=21-4\sqrt{5}\)

c: \(2\sqrt{3}-\sqrt{27}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)

d: \(\sqrt{45}-\sqrt{20}+\sqrt{5}\)

\(=3\sqrt{5}-2\sqrt{5}+\sqrt{5}\)

\(=4\sqrt{5}-2\sqrt{5}=2\sqrt{5}\)

15 tháng 10 2024

\(P=\left(1+\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1+\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}=\dfrac{2\left(\sqrt[]{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{2}{\sqrt{x}}\)

15 tháng 10 2024

1: Thay x=9 vào A, ta được:

\(A=\dfrac{3\cdot3}{3+2}=\dfrac{9}{5}\)

2: \(B=\dfrac{x+4}{x-4}-\dfrac{2}{\sqrt{x}-2}\)

\(=\dfrac{x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}\)

\(=\dfrac{x+4-2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

3: \(A-B< \dfrac{3}{2}\)

=>\(\dfrac{3\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}< \dfrac{3}{2}\)

=>\(\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2}< 0\)

=>\(\dfrac{4\sqrt{x}-3\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(\dfrac{\sqrt[]{x}-6}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(\sqrt{x}-6< 0\)

=>\(\sqrt{x}< 6\)

=>0<=x<36

mà x là số nguyên dương lớn nhất thỏa mãn

nên x=35

15 tháng 10 2024

a: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-\left(a-4\right)}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: P>1/6

=>P-1/6>0

=>\(\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}>0\)

=>\(\dfrac{6\left(\sqrt{a}-2\right)-3\sqrt{a}}{18\sqrt{a}}>0\)

=>\(6\left(\sqrt{a}-2\right)-3\sqrt{a}>0\)

=>\(3\sqrt{a}-12>0\)

=>\(\sqrt{a}>4\)
=>a>16

15 tháng 10 2024

a: \(A=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt[]{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)

\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}+3}=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{4x}{\sqrt{x}-3}\)

b: A=-2

=>\(4x=-2\left(\sqrt{x}-3\right)=-2\sqrt{x}+6\)

=>\(4x+2\sqrt{x}-6=0\)

=>\(2x+\sqrt{x}-3=0\)

=>\(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

mà \(2\sqrt{x}+3>=3>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1=0\)

=>x=1(nhận)