Giải phương trình: \(2x\left(3x-1\right)^2-9x^2+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Họ Và Tên tham gia nhóm này cho đở chán nha
nhấp vào đây(1) buôn muối có tổ chức | Facebook
a) C/m \(\widehat{PEA}+\widehat{PDA}=90^o+90^o=180^o\) (D,E theo thứ tự là hình chiếu của P trên các đường thẳng AB, AC -> \(PE\perp AC\) ; \(PD\perp AB\))
Mà 2 góc ở vị trí đối nhau -> Tứ giác ADPE nội tiếp (dhnb)
b) \(\widehat{PDA}=90^o\Rightarrow\widehat{PDB}=90^o\left(D\in AB\right)\)-> \(D\in\)đtròn đkính PB (1)
Có: OB = OC = R -> O \(\in\)đường trung trực của BC
Hai tiếp tuyến của (O) tại B, C cắt nhau tại P -> PB = PC (t/c 2 tiếp tuyến cắt nhau) -> P \(\in\)đường trung trực của BC
-> OP là đường trung trực của BC -> OP \(\perp\)BC tại trung điểm của BC
Mà M là trung điểm của BC (gt)
-> \(PM\perp BC\Rightarrow\widehat{PMB}=\widehat{PMC}=90^o\)\(\Rightarrow M\in\)đtròn đkính PB (2)
Từ (1) và (2) -> Tứ giác PDBM nt đtròn đkính PB (btoán quỹ tích)
-> \(\widehat{PDM}=\widehat{PBM}\)(góc nt cùng chắn cung PM) hay \(\widehat{PDM}=\widehat{PBC}\left(M\in BC\right)\)
Lại có: \(\widehat{PBC}=\widehat{BAC}\)(góc tạo bởi tiếp tuyến và dây cung và góc nt chắn cung BC của (O))
-> \(\widehat{BAC}=\widehat{PDM}\)(đpcm)
c) Nối EM
Có: \(\widehat{PEC}=\widehat{PMC}\)(\(\widehat{PEA}=90^o,E\in AC\)) -> E, M \(\in\)đtròn đkính PC
Mà 2 góc ở vị trí đối nhau -> Tứ giác PECM nt đtròn đkính PC -> \(\widehat{PEM}=\widehat{PCM}\)(góc nt cùng chắn cung PM)
Lại có PB = PC (cmt) -> \(\Delta PBC\)cân tại P \(\Rightarrow\widehat{PBM}=\widehat{PCM}\)
\(\Rightarrow\widehat{PEM}=\widehat{PBM}\), mà \(\widehat{PBM}=\widehat{PDM}\)(cmt) -> \(\widehat{PEM}=\widehat{PDM}\)
Vì tứ giác ADPE nội tiếp (cmt) \(\Rightarrow\widehat{A}+\widehat{DPE}=180^o\)(2 góc đối)
Lại có: \(\widehat{BAC}=\widehat{PDM}\)
\(\Rightarrow\widehat{PDM}+\widehat{DPE}=180^o\)mà 2 góc này ở vị trí trong cùng phía
-> PE // DM mà \(PE\perp AC\)\(\Rightarrow DM\perp EA\left(E\in AC\right)\)(3)
Có: \(\widehat{PDM}+\widehat{DPE}=180^o\Rightarrow\widehat{PEM}+\widehat{DPE}=180^o\) (\(\widehat{PEM}=\widehat{PDM}\))
Mà 2 góc nằm ở vị trí trong cùng phía -> PD // EM mà \(PD\perp AB\)\(\rightarrow EM\perp AD\left(D\in AB\right)\)(4)
Từ (3) và (4) xét tam giác ADE -> M là trực tâm của tam giác ADE (đpcm)
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh
\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng holder ta có:
\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)
\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)
Từ đây ta cần chứng minh:
\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )
Vậy có ĐPCM
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)
a, ĐKXĐ : \(x\ne9;x\ge0\)
b, \(T=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}\)
\(=\frac{-3\sqrt{x}-3}{x-9}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\left(\sqrt{x}+3\right)^2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{-3\left(\sqrt{x}+3\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
a, Với \(x\ge0;x\ne1\)
\(A=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\frac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b, Để A nguyên khi \(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=\frac{2}{\sqrt{x}+1}\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}+1\) | 1 | -1 | 2 | -2 |
x | 0 | vô lí | 1 | vô lí |
Δ = b2 - 4ac = [ -( m - 1 ) ]2 + 12
= ( m - 1 )2 + 12 ≥ 12 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt ∀ m ( đpcm )
\(2x\left(3x-1\right)^2-9x^2+1=0\)
\(\Leftrightarrow2x\left(3x-1\right)^2-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[2x\left(3x-1\right)-3x-1\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\6x^2-5x-1=0\left(1\right)\end{cases}}\)
\(\Delta_{\left(1\right)}=5^2+4.6=49>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{5+7}{12}=1\\x_2=\frac{5-7}{12}=\frac{-1}{6}\end{cases}}\)
Vậy tập hợp nghiệm của phương trình \(S=\left\{1;\frac{1}{3};\frac{-1}{6}\right\}\)