K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nối các điểm ta có tứ giác MNPQMNPQ

Tứ giác MNPQMNPQ có:

- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 2cm2cm, chiều rộng 1cm1cm. Do đó theo định lí Py-ta-go, ta có:

MN=NP=PQ=QM=√22+12=√5(cm)MN=NP=PQ=QM=22+12=5(cm).

Hay MNPQMNPQ là hình thoi.

- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 3cm3cm, chiều rộng 1cm1cm nên theo định lý Py-ta-go ta có độ dài đường chéo là:

MP=NQ=√32+12=√10(cm).MP=NQ=32+12=10(cm). 

Như vậy hình thoi MNPQMNPQ có hai đường chéo bằng nhau nên MNPQMNPQ là hình vuông.

Vậy diện tích hình vuông MNPQMNPQ bằng MN2=(√5)2=5(cm2)


 

13 tháng 5 2021

Ta thấy mỗi cạnh của tứ giác MNPQMNPQ là đường chéo của hình chữ nhật do hai ô vuông ghép lại, nên hình đó có bốn cạnh bằng nhau và bằng \sqrt{1^2+2^2}=\sqrt{5}căn 1^2 + 2^2 = căn 5 (đvđd) (định lý Pytago)

Tứ giác MNPQMNPQ có bốn cạnh bằng nhau nên tứ giác MNPQMNPQ là hình thoi.

Mỗi đường chéo của tứ giác MNPQMNPQ là đường chéo của hình chữ nhật do ba ô vuông ghép lại, nên giác MNPQMNPQ có hai đường chéo bằng nhau và bằng căn 1^ 2 + 3^2 = căn 10 đvđ d\sqrt{1^2+3^2}=\sqrt{10}c(đvđd)

Hình thoi MNPQMNPQ có hai đường chéo bằng nhau nên tứ giác MNPQMNPQ là hình vuông.

Diện tích hình vuông MNPQMNPQ:

            S = (\sqrt{5})^2 = 5S=(căn5)^22 =5 (đvdt)

a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01

Vì  VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT. 

b) Sai

Vì vế phải không có nghĩa do số âm không có căn bậc hai.

c) Đúng.

Vì: 36<39<4936<39<49  ⇔√36<√39<√49⇔36<39<49

                                 ⇔√62<√39<√72⇔62<39<72

                                 ⇔6<√39<7⇔6<39<7

Hay √39>639>6 và √39<739<7.

d) Đúng. 

Xét bất phương trình đề cho:

                  (4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13)     (1)(1)

Ta có: 

16>13⇔√16>√1316>13⇔16>13

                       ⇔√42>√13⇔42>13

                       ⇔4>√13⇔4>13

                       ⇔4−√13>0⇔4−13>0

Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:

                         (4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)

                        ⇔2x<√3.⇔2x<3.

 Vậy phép biến đổi tương đương trong câu d là đúng. 


 

13 tháng 5 2021

a ) Đúng 

b) Sai vì vế phải không có nghĩa 

c) Đúng 

d) Đúng

23 tháng 4 2021

a, \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)ĐK : \(x\ge3\)

TH1 : \(x-3=9\Leftrightarrow x=12\)

TH2 ; \(x-3=-9\Leftrightarrow x=-6\)( ktm )

b, \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)ĐK : \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left|2x+1\right|=6\)TH1 : \(2x+1=6\Leftrightarrow x=\frac{5}{2}\)

TH2 : \(2x+1=-6\Leftrightarrow x=-\frac{7}{2}\)( ktm )

23 tháng 4 2021

a) \(\sqrt{\left(x-3\right)^2}\)=9

<=> |x-3|=9

x=12 hoặc x=-6

b) \(\sqrt{4x^2+4x+1}\)=6

<=> |2x+1|=6

<=> x=\(\frac{5}{2}\) hoặc x=\(-\frac{7}{2}\)

23 tháng 4 2021

a) \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)

Vậy ...

b) \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{2}\end{cases}}\)

Vậy ...

13 tháng 5 2021

a) x=12 hoặc x = -6

b) x = 5/2 hoặc x = - 7/2

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)