Cho đường tròn tâm O bán kính R. Dây cung AB cố định bằng căn 3 R, M di động trên cung lớn AB. Đường tròn tâm I nội tiếp tam giác ABM, tiếp xúc với MA,MB lần lượt tại E và F. CM tg MEIF nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2] cao của hình trụ là h (cm)
Đk: h > p
Ta có: Sxq = 2πRh
Stp = 2πRh + 2πR^2
Theo bài ra ta có: Stp = 2Sxq
=> 2πRh + 2πR^2 = 2.2πRh
⇔ 2πR^2 = 2πRh
⇒ h = R = 6 cm
Thể tích V = πR^2.h = π.6^2.6 = 216π (cm3)
Vậy . . .
\(x^2-\left(2m+1\right)x+m^2+m-6=0\)
\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)
\(=4m^2+4m+1-4m^2-3m+24\)
\(=25>0\)
\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)
Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow x_1-x_2=\pm5\)
Ta có\(\left|x_1^2-x_2^2\right|=5\)
\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)
( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)
Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...
( check hộ mình nha )
ý a dễ
b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90
Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)
=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn
c/
Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)
số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)
số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)
Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC
@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.
mai có vẻ khẩu nghiệp ghê tặng bạn mấy vé báo cáo cho vui
\(\hept{\begin{cases}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{cases}}\left(ĐK:\hept{\begin{cases}x+y\ge0\\2x+y+2\ge0\end{cases}}\right)\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}+\sqrt{2x+y+2}=7\\x=\frac{23-2y}{3}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{23-2y}{3}+y}+\sqrt{\frac{46-4y}{3}+y+2}=7\)
\(\Leftrightarrow\sqrt{\frac{23+y}{3}}+\sqrt{\frac{52-y}{3}}=7\)
\(\Leftrightarrow\)\(\frac{23+y+52\cdot y}{3}+2\sqrt{\left(\frac{23+y}{3}\right)\left(\frac{52-y}{3}\right)}=49\)
\(\Leftrightarrow25+2\frac{\sqrt{\left(23+y\right)\left(52-y\right)}}{3}=49\)
\(\Leftrightarrow\sqrt{\left(23+y\right)\left(52-y\right)}=36\)
\(\Leftrightarrow1196+52y-23y-y^2=1296\)
\(\Leftrightarrow-y^2+29y-100=0\)
\(\Leftrightarrow y^2-29y+100=0\)
\(\Delta=29^2-4.100=441\)
\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}y=\frac{29+21}{2}=25\Rightarrow x=-9\\y=\frac{29-21}{2}=4\Rightarrow x=5\end{cases}}\)
Vậy hệ pt có no (x,y) =( -9;25) ; (5;4)