Tìm giá trị nhỏ nhất của biểu thức sau: A = |x − 2019| + |x − 2020| + |x − 2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABM và tam giác DCM có:
+, BM = MC ( AM là đường trung tuyến của tam giác ABC )
+, Góc AMB = góc DMC ( 2 góc đối đỉnh )
+, AM = MD ( gt )
=> tam giác ABM = tam giác DCM ( c.g.c )
=> AB = CD ( 2 cạnh tương ứng )
=> góc BAM = góc CDM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( đpcm )
sửa đề : \(P+x^2-2y^2=3xy^2-y\Leftrightarrow P=3xy^2-y-x^2+2y^2\)
mọi người ơi giúp mik với mik đang cần rấttttttttt gấp trong tối nay vào trc 9h
`Answer:`
a. \(5x-[2x+1-\left(2x-3\right)-\left(4x+1\right)]\)
\(=5x-\left(2x+1-2x+3-4x-1\right)\)
\(=5x-2x-1+2x-3+4x+1\)
\(=\left(5x-2x+2x+4x\right)+\left(-3-1+1\right)\)
\(=9x-3\)
b. \(\left(-3x^2+2x-1\right)+\left(4x^2-2x+3\right)\)
\(=-3x^2+2x-1+4x^2-2x+3\)
\(=\left(-3x^2+4x^2\right)+\left(2x-2x\right)+\left(-1+3\right)\)
\(=x^2+2\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)< 0\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)< 0\)
Đặt \(x^2-5x+4=t\)
\(t\left(t+2\right)< 0\)
TH1 : \(\orbr{\begin{cases}t>0\\t+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}t>0\\t< -2\end{cases}}\)( vô lí )
TH2 : \(\orbr{\begin{cases}t< 0\\t+2>0\end{cases}}\Rightarrow-2< t< 0\Rightarrow-2< x^2-5x+4< 0\)
Xét \(x^2-5x+4>-2\)
\(x^2-5x+6>0\)
\(\left(x-2\right)\left(x-3\right)>0\)
( 1 ) \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>3\end{cases}}\Rightarrow x>3\)
( 2 ) \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< 3\end{cases}}\Rightarrow x< 2\)
Từ hệ ( 1 ) và ( 2 ) = > x > 3 hoặc x < 2 ( * )
\(x^2-5x+4< 0\)
\(\left(x-1\right)\left(x-4\right)< 0\)
( 1 ) \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< 4\end{cases}}\Rightarrow1< x< 4\)
( 2 ) \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>4\end{cases}}\)không có giá trị nào của x thỏa mãn hệ 2
= > 1 < x < 4 ( ** )
Từ ( * ) và ( ** ) = > \(1< x< 2\)và \(3< x< 4\)