-5 [ 2x - 2 ( x + 1 ) ] = 6 +x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số thùng hàng đã lấy đi sau c ngày là 30c(thùng)
=>T=900-30c
b: Đặt T=0
=>900-30c=0
=>30c=900
=>c=30
vậy: Sau 30 ngày thì xưởng sẽ vận chuyển hết 900 thùng
c: Số tiền vốn của xưởng là:
\(900\cdot2000000=1800000000\left(đồng\right)\)
Số tiền xưởng phải chi là:
\(30\cdot2500000=75000000\left(đồng\right)\)
Xưởng sẽ lời được:
1800000000-75000000=1725000000(đồng)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2=12^2+16^2=400\)
=>\(BC=\sqrt{400}=20\)
ΔABC~ΔHBA
=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}=\dfrac{HA}{AC}\)
=>\(\dfrac{HB}{12}=\dfrac{HA}{16}=\dfrac{12}{20}=\dfrac{3}{5}\)
=>\(HB=12\cdot\dfrac{3}{5}=7,2;HA=16\cdot\dfrac{3}{5}=9,6\)
c:
ta có: \(\widehat{ANB}+\widehat{ABN}=90^0\)(ΔABN vuông tại A)
\(\widehat{HMB}+\widehat{HBM}=90^0\)(ΔHBM vuông tại H)
mà \(\widehat{ABN}=\widehat{HBM}\)
nên \(\widehat{ANB}=\widehat{HMB}\)
=>\(\widehat{ANM}=\widehat{AMN}\)
=>ΔAMN cân tại A
Xét ΔBAH có BM là phân giác
nên \(\dfrac{AM}{MH}=\dfrac{BA}{BH}\)
=>\(\dfrac{AM}{MH}=\dfrac{BC}{BA}\)
=>\(AB\cdot AM=MH\cdot BC\)
\(\dfrac{3-x}{2009}-\dfrac{2-x}{2010}+\dfrac{1-x}{2011}=-1\)
=>\(\dfrac{x-3}{2009}+\dfrac{x-2}{2010}-\dfrac{x-1}{2011}=1\)
=>\(\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-1}{2011}-1\right)=0\)
=>\(\dfrac{x-2012}{2009}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2011}=0\)
=>\(\left(x-2012\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)
=>x-2012=0
=>x=2012
a: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)(1)
=>\(CA^2=CH\cdot CB\)
b: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{BK}=\dfrac{CA}{CB}\left(2\right)\)
Xét ΔCAH có CI là phân giác
nên \(\dfrac{IH}{IA}=\dfrac{CH}{CA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{AK}{BK}=\dfrac{IH}{IA}\)
\(\left(x+0,35x\right)^4=114752300\)
=>\(\left[{}\begin{matrix}1,35x=103,5\\1,35x=-103,5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=100\\x=-100\end{matrix}\right.\)
Gọi x (tuổi) là tuổi em hiện nay (x > 0)
Tuổi anh hiện nay là: 4x (tuổi)
Tuổi em 7 năm sau: x + 7 (tuổi)
Tuổi anh 7 năm sau: 4x + 7 (tuổi)
Theo đề bài, ta có phương trình:
4x + 7 = 3(x + 7)
4x + 7 = 3x + 21
4x - 3x = 21 - 7
x = 14 (nhận)
Vậy tuổi em hiện nay là 14 tuổi, tuổi anh hiện nay là 4.14 = 56 tuổi.
(Chú ý: Em xem lại số liệu chứ tuổi em là 14 mà sao tuổi anh tới 56 tuổi là không hợp lý)
\(\Omega=\left\{1;2;3;...;30\right\}\)
=>\(n\left(\Omega\right)=30-1+1=30\)
Gọi A là biến cố "Số xuất hiện trên thẻ được rút ra là số chia hết cho 2 và 5"
=>A={10;20;30}
=>n(A)=3
\(P_A=\dfrac{3}{30}=\dfrac{1}{10}\)
Lơ giải:
Giả sử quyển thứ hai tăng $a$ % so với giá ban đầu thì quyển thứ nhất tăng $a+5$ % so với giá ban đầu.
Theo bài ra ta có:
$30(1+\frac{a+5}{100})+65(1+\frac{a}{100})=106$
$\Rightarrow 0,95a+96,5=106$
$\Rightarrow a=10$ (%)
Vậy quyển 1 tăng 15% và quyển 2 tăng 10%
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
ΔABH~ΔCBA
=>\(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9,6\left(cm\right)\)
c: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{KC}=\dfrac{BA}{BC}\left(1\right)\)
=>\(\dfrac{AK}{BA}=\dfrac{KC}{BC}\)
=>\(\dfrac{AK}{12}=\dfrac{KC}{20}\)
=>\(\dfrac{AK}{3}=\dfrac{KC}{5}\)
mà AK+KC=AC=16cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{3}=\dfrac{KC}{5}=\dfrac{AK+KC}{3+5}=\dfrac{16}{8}=2\)
=>\(AK=2\cdot3=6\left(cm\right)\)
d: Xét ΔBAK vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABK}=\widehat{HBI}\)
Do đó: ΔBAK~ΔBHI
=>\(\widehat{BKA}=\widehat{BIH}\)
=>\(\widehat{AIK}=\widehat{AKI}\)
=>ΔAKI cân tại A
\(-5\left[2x-2\left(x+1\right)\right]=6+x\)
=>\(6+x=-5\left[2x-2x-2\right]\)
=>x+6=10
=>x=4
\(-5\left[2x-2\left(x+1\right)\right]=6+x\)
\(\Leftrightarrow-5\left(2x-2x-2\right)=6+x\)
\(\Leftrightarrow10=6+x\)
\(\Leftrightarrow x=4\)