chứng minh A=( \(2023^{2024^{2025}}\)- \(2017^{2024^{2023}}\)):10 là một số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2023^{2024^{2025}}-2017^{2024^{2023}}}{10}\)
A = \(\dfrac{2023^{2^{2025}.1012^{2025}}-2017^{2^{2023}.1012^{2023}}}{10}\)
A = \(\dfrac{2023^{2^2.2^{2023}.1012^{2025}}-2017^{2^2.2^{2021}1012^{2023}.}}{10}\)
A = \(\dfrac{2023^{4.2^{2023}.1012^{2025}}-2017^{4.2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(2023^4\right)^{2^{2023}.1012^{2025}}-\left(2017^4\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(\overline{..1}\right)^{2^{2023}.1012^{2025}}-\left(\overline{..1}\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\overline{..1}-\overline{..1}}{10}\)
A = \(\dfrac{\overline{..0}}{10}\)
A \(\in\) N (đpcm)
\(5x+xy-4y=3\)
\(\Rightarrow x\left(y+5\right)-4y-20=3-20\)
\(\Rightarrow x\left(y+5\right)-4\left(y+5\right)=-17\)
\(\Rightarrow\left(y+5\right)\left(x-4\right)=-17\)
Bổ sung: \(x,y\in Z\)
Ta có bảng:
y + 5 | -1 | 1 | 17 | -17 |
x - 4 | 17 | -17 | -1 | 1 |
y | -6 | -4 | 12 | -22 |
x | 21 | -13 | 3 | 5 |
Vậy: ...
\(5x+xy-4y=3\)
\(\Rightarrow x\cdot\left(y+5\right)-4y-20=3-20\)
\(\Rightarrow x\cdot\left(y+5\right)-4\cdot\left(y+5\right)=-17\)
\(\Rightarrow\left(y+5\right)\cdot\left(x-4\right)=-17\)
\(\Leftrightarrow x,y\in Z\)
Lập bảng giá trị:
\(y+5\) | \(-1\) | \(1\) | \(17\) |
\(-17\) |
\(x-4\) | \(17\) | \(-17\) | \(-1\) |
\(1\) |
\(y\) | \(-6\) | \(-4\) | \(12\) |
\(-22\) |
\(x\) | \(21\) | \(-13\) | \(3\) |
\(5\) |
Vậy \(\left(x;y\right)\in\left\{\left(21;-6\right),\left(-13;-4\right),\left(3;12\right),\left(5;-22\right)\right\}\)
Để A nhỏ nhất thì (x + 3)² + 1 nhỏ nhất
Ta có:
(x + 3)² ≥ 0
⇒ (x + 3)² + 1 ≥ 1
⇒ A nhỏ nhất là -5/1 = -5 khi x = -3
\(A=\dfrac{-5}{\left(x+3\right)^2+1}\) (Tìm số nguyên \(x\) để \(A_{min}\))
Vì \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\forall x\)
\(\Rightarrow\dfrac{-5}{\left(x+3\right)^2+1}\ge-5\forall x\)
hay \(A\ge-5\)
Dấu \("="\) xảy ra:
\(\Leftrightarrow\left(x+3\right)^2=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=0-3=-3\left(TM\right)\)
Vậy \(M\in A=-5\Leftrightarrow x=-3\)
(\(x+2\)).(\(x^2\) + 1) ≥ 0
\(x^2\) ≥ 0 ∀ \(x\)
\(x^2\) + 1 ≥ 1 ∀ \(x\)
Lập bảng ta có:
\(x\) | -2 |
\(x+2\) | - 0 + |
\(x^2\) + 1 | + + |
(\(x+2\))(\(x^2\) + 1) | - 0 + |
Theo bảng trên ta có:
\(x\) ≥ -2
Vậy \(x\) ≥ -2
Ta có:
(a + 4b) ⋮ 13
⇒ 9(a + 4b) ⋮ 13
⇒ (9a + 36b) ⋮ 13
⇒ (9a + 36b + a + 4b) ⋮ 13
⇒ (10a + 40b) ⋮ 13
Lại có: 39b ⋮ 13
⇒ (10a + 40b - 39b) ⋮ 13
⇒ (10a + b) ⋮ 13
Mà (a + 4b) ⋮ 13
⇒ (a + 4b)(10a + b) ⋮ 13.13
⇒ (a + 4b)(10a + b) ⋮ 169
\(a+4b⋮13\Rightarrow11.\left(a+4b\right)=11a+44b⋮13\)
\(\Rightarrow\left(11a+44b\right)-\left(a+4b\right)=10a+40b=\left(10a+b\right)+39⋮13\)
Mà \(39⋮13\Rightarrow10a+b⋮13\)
Đặt
\(a+4b=13p;10a+b=13q\)
\(\Rightarrow\left(a+4b\right).\left(10a+b\right)=13p.13q=169pq⋮169\)
Gọi x là số cần tìm (x ∈ ℕ* và 100 < x < 1000)
Do khi chia x cho 25; 28; 35 thì được các số dư lần lượt là 4; 7; 14 nên x + 21 chia hết cho 25; 28; 35
⇒ x + 21 ∈ BC(25; 28; 35)
Ta có:
25 = 5²
28 = 2².7
35 = 5.7
⇒ BCNN(25; 28; 35) = 2².5².7 = 700
⇒ x + 21 ∈ BC(25; 28; 35) = B(700) = (0; 700; 1400; ...)
⇒ x ∈ {-21; 679; 1379; ...}
Mà 100 < x < 1000
⇒ x = 679
Vậy số tự nhiên cần tìm là 679
A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3^{ }}\) + \(\dfrac{3}{3^2}\) - \(\dfrac{4}{3^3}\) + ... + \(\dfrac{99}{3^{98}}\) - \(\dfrac{100}{3^{99}}\)
3A+A = 1-\(\dfrac{2}{3^{ }}\)+\(\dfrac{3}{3^2}\)-\(\dfrac{4}{3^3}\)+...+\(\dfrac{99}{3^{98}}\)-\(\dfrac{100}{3^{99}}\)+\(\dfrac{1}{3}-\dfrac{2}{3^2}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
4A = 1-(\(\dfrac{2}{3}\)-\(\dfrac{1}{3}\)) +(\(\dfrac{3}{3^2}\)-\(\dfrac{2}{3^2}\))-(\(\dfrac{4}{3^3}\)-\(\dfrac{3}{3^3}\))+...+(\(\dfrac{99}{3^{98}}\)-\(\dfrac{98}{3^{98}}\))-(\(\dfrac{100}{3^{99}}\)-\(\dfrac{99}{3^{99}}\))-\(\dfrac{100}{3^{100}}\)
4A = 1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)-\(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{98}}\)-\(\dfrac{1}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)
12A = 3-1+\(\dfrac{1}{3}\)-\(\dfrac{1}{3^2}\)+....+\(\dfrac{1}{3^{97}}\)-\(\dfrac{1}{3^{98}}\)-\(\dfrac{100}{3^{99}}\)
12A+4A=3-1+\(\dfrac{1}{3}\)-\(\dfrac{1}{3^2}\)+..+\(\dfrac{1}{3^{97}}\)-\(\dfrac{1}{3^{98}}\)-\(\dfrac{100}{3^{99}}\)+1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)-\(\dfrac{1}{3^3}\)+..+\(\dfrac{1}{3^{98}}\)-\(\dfrac{1}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)
16A = 3+(-1+1)+(\(\dfrac{1}{3}-\dfrac{1}{3}\))+...+(-\(\dfrac{1}{3^{98}}\)+\(\dfrac{1}{3^{98}}\))+(-\(\dfrac{100}{3^{99}}\)-\(\dfrac{1}{3^{99}}\)) - \(\dfrac{100}{3^{100}}\)
16A = 3 - \(\dfrac{101}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)
16A = 3 - \(\dfrac{303}{3^{100}}\) - \(\dfrac{100}{3^{100}}\)
16A = 3 - \(\dfrac{403}{3^{100}}\)
A = \(\dfrac{3}{16}\) - \(\dfrac{403}{16.3^{100}}\) < \(\dfrac{3}{16}\) < \(\dfrac{3}{14}\) (đpcm)
A = \(\dfrac{n+1}{n+2}\) ( n ≠ -2)
Gọi ƯCLN(n + 1; n + 2) = d
Ta có: \(\left\{{}\begin{matrix}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{matrix}\right.\)
⇒ ( (n + 2) - (n + 1) ) ⋮ d
(n + 2 - n - 1) ⋮ d
1 ⋮ d
Vậy ƯCLN(n +1; n + 2) = 1
Hay A = \(\dfrac{n+1}{n+2}\) là phân số tối giản.
A = \(\dfrac{2023^{2024^{2025}}-2017^{2024^{2023}}}{10}\)
A = \(\dfrac{2023^{2^{2025}.1012^{2025}}-2017^{2^{2023}.1012^{2023}}}{10}\)
A = \(\dfrac{2023^{2^2.2^{2023}.1012^{2025}}-2017^{2^2.2^{2021}1012^{2023}.}}{10}\)
A = \(\dfrac{2023^{4.2^{2023}.1012^{2025}}-2017^{4.2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(2023^4\right)^{2^{2023}.1012^{2025}}-\left(2017^4\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(\overline{..1}\right)^{2^{2023}.1012^{2025}}-\left(\overline{..1}\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\overline{..1}-\overline{..1}}{10}\)
A = \(\dfrac{\overline{..0}}{10}\)
A \(\in\) N (đpcm)