K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

DD
13 tháng 5 2021

\(x^3+y^3+xy=x^2+y^2\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)

\(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).

\(x+y=1\Rightarrow0\le x,y\le1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)

Dấu \(=\)xảy ra tại \(x=0,y=1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)

Dấu \(=\)xảy ra tại \(x=1,y=0\).

12 tháng 5 2021

trình bày đầy đủ :

Ta có BĐT sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y >0 )

CM: \(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

Áp dụng bđt cô si cho 2 số dương x,y ta có:

\(x+y\ge2\sqrt{xy}\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)( đúng )

Áp dụng bđt trên ta có: 

\(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)

Vậy MIN P= \(\sqrt{2}\)\(a=b=\sqrt{2}\)

\(bđtcosi\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Dấu = xảy ra <=> a=b=\(\sqrt{2}\)

Min P=\(\sqrt{2}\)<=>a=b=\(\sqrt{2}\)

12 tháng 5 2021

sao mệt vậy

12 tháng 5 2021

Bạn ơi bạn nên đọc kĩ nội quy của phần thảo luận đi!

\(\Delta=49+4m^2+20>0\left(4m^2\ge0\right)\)

=> có 2 nghiệm pb x1,x2

áp dụng hệ thức vi et

\(\hept{\begin{cases}x_1.x_2=-\left(m^2+5\right)\\x_1+x_2=-7\end{cases}}\)

\(T=\left(x_1+x_2\right)^2-x_1.x_2+2m=49+m^2+5+2m=m^2+2m+54=\left(m+1\right)^2+53\ge53\)

Dấu = xảy ra <=> m=-1

Min T=53 <=>m=-1

12 tháng 5 2021

a, Ta có : 

\(\Delta=49-4\left(-m^2-5\right)=49+4m^2+20=4m^2+69>0\)

Do delta > 0 nên pt có 2 nghiệm pb ( đpcm )

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-7\\x_1x_2=\frac{c}{a}=-m^2-5\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=49\Leftrightarrow x_1^2+x_2^2=49-2\left(-m^2-5\right)=59+2m^2\)

Ta có : \(T=59+2m^2+\left(-m^2-5\right)+2m\)

\(=m^2+2m+54=\left(m+1\right)^2+53\ge53\)

Dấu ''='' xảy ra khi \(m=-1\)

Vậy GTNN T là 53 khi m = -1

12 tháng 5 2021

\(x^2+\frac{1}{x^2}-4x-\frac{4}{x}+5\)

\(=\left(x^2+2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+3\)

\(=\left(x+\frac{1}{x}\right)^2-4\left(x+\frac{1}{x}\right)+3\)

\(=\left(x+\frac{1}{x}-2\right)^2-1=\left(x+\frac{1}{x}-3\right)\left(x+\frac{1}{x}-1\right)\)

12 tháng 5 2021

Đề sai nha cậu

12 tháng 5 2021

a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)

Thay \(\sqrt{x}=9\)vào biểu thức A ta được : 

\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)

b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)

\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)

nên \(P>\frac{1}{2}\)

12 tháng 5 2021

a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)

b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)

\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)

=> P>1/2

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp

 

12 tháng 5 2021

                             Bài làm :

Gọi chiều dài một cạnh cần tính là a (m) ; chiều cao tương ứng là h (m) . Điều kiện : a,h > 0

Thửa ruộng có S=2180 m2 

\(\Rightarrow\frac{a.h}{2}=2180\Rightarrow a.h=4360\Rightarrow a=\frac{4360}{h}\left(1\right)\)

Tăng cạnh 4m ; giảm chiều cao tương ứng 1m thì S không đổi 

\(\Rightarrow\left(a+4\right)\left(h-1\right)=4360\left(2\right)\)

Thay (1) vào (2) ; ta được :

\(\left(\frac{4360}{h}+4\right)\left(h-1\right)=4360\)

\(\Leftrightarrow\frac{\left(4360+4h\right)\left(h-1\right)}{h}=\frac{4360h}{h}\)

\(\Leftrightarrow4h^2+4356h-4360-4360h=0\)

\(\Leftrightarrow4h^2-4h-4360=0\)

\(\Delta'=2^2-4.\left(-4360\right)=17444>0\)

\(\Rightarrow\hept{\begin{cases}h_1=\frac{2+\sqrt{17444}}{4}=\frac{1+7\sqrt{89}}{2}\left(TM\right)\\h_2=\frac{2-\sqrt{17444}}{4}=\frac{1-7\sqrt{89}}{2}\left(KTM\right)\end{cases}}\)

Vậy chiều dài một cạnh cần tính là :

\(\frac{4360}{h}=\frac{4360}{\frac{1+7\sqrt{89}}{2}}=-2+14\sqrt{89}\left(m\right)\)

12 tháng 5 2021

Ơ quản lí đùa em à đề bài ghi 2180 m2 mà lời giải là 180 m2 @@ mất gần nửa tiếng số xấu :((