cho đoạn thẳng EF= 7cm , lấy điểm I nằm giữa E,F sao cho EI= 1cm , lấy diểm M nằm giữa I,F sao cho IM = 1/3 MF . Tính IF , IM ,MF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét ΔAMC và ΔABN có
AM=AB
\(\widehat{MAC}\) chung
AC=AN
Do đó: ΔAMC=ΔABN
b: Gọi K là giao điểm của CM với BN
Ta có: ΔAMC=ΔABN
=>\(\widehat{AMC}=\widehat{ABN}\)
Xét tứ giác AMBK có \(\widehat{AMH}=\widehat{ABH}\)
nên AMBK là tứ giác nội tiếp
=>\(\widehat{BAM}=\widehat{BKM}=90^0\)
=>BN\(\perp\)CM tại K
Lời giải:
$\frac{2x+1}{-27}=\frac{-3}{2x+1}$
$\Rightarrow (2x+1)^2=(-27)(-3)$
$\Rightarrow (2x+1)^2=81=9^2=(-9)^2$
$\Rightarrow 2x+1=9$ hoặc $2x+1=-9$
$\Rightarrow x=4$ hoặc $x=-5$
6 can cần số lượng dầu là:
6 x 5 = 306 (l)
Số lượng dầu đó là:
306 - 21 = 285 (l)
Đáp số: 285 lít
\(x:\dfrac{1}{2}=\dfrac{1}{8}\)
=>\(x=\dfrac{1}{8}\times\dfrac{1}{2}=\dfrac{1}{16}\)
\(2,24\times0,99+2,46:100\)
\(=2,24\times0,99+2,46\times0,01\)
\(=2,24\times2,46\times\left(0,99+0,1\right)\)
\(=2,24\times2,46\)
\(=5,5104\)
2,24x0,99+2,46:100
=2,24x0,99+2,46x0,01
=2,2176+0,0246
=2,2422
Do P(x) chia hết cho x - 1 nên nghiệm của đa thức x - 1 cũng là nghiệm của P(x)
Cho x - 1 = 0
x = 0 + 1
x = 1
⇒ P(1) = a.1² + b.1 + c
= a + b + c
= 0
Vậy S = 0
1: Thay x=36 vào A, ta được:
\(A=\dfrac{36-5}{\sqrt{36}}=\dfrac{31}{6}\)
2: \(B=\dfrac{2x+\sqrt{x}}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2x+\sqrt{x}+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
3: \(P=A\cdot B=\dfrac{3x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-5}{\sqrt{x}}\)
\(=\dfrac{\left(x-5\right)\left(3\sqrt{x}+2\right)}{x-1}=\dfrac{\left(x-1\right)\left(3\sqrt{x}+2\right)-4\left(3\sqrt{x}+2\right)}{x-1}\)
\(=3\sqrt{x}+2-\dfrac{4\left(3\sqrt{x}+2\right)}{x-1}\)
Để P là số nguyên thì \(3\sqrt{x}+2⋮x-1\)
=>\(\left(3\sqrt{x}+2\right)\left(3\sqrt{x}-2\right)⋮x-1\)
=>\(9x-4⋮x-1\)
=>\(9x-9+5⋮x-1\)
=>\(5⋮x-1\)
=>\(x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{2;0;6;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6\right\}\)
Khi x=2 thì \(P=3\sqrt{2}+2-\dfrac{4\left(3\sqrt{2}+2\right)}{2-1}\)
\(=3\sqrt{2}+2-4\left(3\sqrt{2}+2\right)=-3\left(3\sqrt{2}+2\right)\notin Z\)
=>Loại
Khi x=6 thì \(P=3\sqrt{6}+2-\dfrac{4\left(3\sqrt{6}+2\right)}{6-1}=3\sqrt{6}+2-\dfrac{4}{5}\left(3\sqrt{6}+2\right)\)
\(=\dfrac{1}{5}\left(3\sqrt{6}+2\right)\notin Z\)
=>Loại
Vậy: \(x\in\varnothing\)
I nằm giữa E và F
=>IE+IF=EF
=>IF+1=7
=>IF=6(cm)
M nằm giữa I và F
=>MI+MF=IF
=>\(\dfrac{1}{3}MF+MF=6\)
=>\(\dfrac{4}{3}MF=6\)
=>\(MF=6:\dfrac{4}{3}=4,5\left(cm\right)\)
Ta có: IM+MF=IF
=>IM+4,5=6
=>IM=1,5(cm)