Cho các số thực dương a,b,c. Tìm Min của:
\(P=\frac{x}{\sqrt{2xy+y^2}}+\frac{y}{\sqrt{2yz+z^2}}+\frac{z}{\sqrt{2zx+x^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: (3,0đ) Cho đường tròn (O; R), lấy điểm M nằm ngoài đường tròn (O; R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O; R) và góc AMB nhọn ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O; R) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K ( khác A).1. Chứng minh: tứ giác NHBI nội tiếp.2. Chứng minh: tam giác NHI đồng dạng với tam giác NIK.3. Gọi C là giao điểm của NB và HI, D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.
\(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}-1\) có ngoặc lớn không bạn?
Ta có:
\(0< a,b< 1\)nên \(a^3< a^2< a< 1,b^3< b^2< b< 1\)
\(\left(1-a^2\right)\left(1-b\right)>0\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\)
Tương tự ta cũng có: \(b^3+c^3< 1+b^2c,c^3+a^3< 1+c^2a\)
Cộng vế với vế lại ta có đpcm.
\(x^2-6x+2m-3=0\)
\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)
Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là
\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)
\(=>x_1^2=3-2m+6x_1\)
\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)
\(=>x_2^2=3-2m+6x_2\)
Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)
\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(x_1x_2-x_1-x_2+1=2\)
\(x_1x_2-\left(x_1+x_2\right)=1\)
\(2m-3-6=1\)
\(2m-9=1\)
\(m=5\)
Vậy m=5
Tính giá trị biểu thức
a, \(\sqrt{2+\sqrt[]{3}}\)
b, \(\sqrt{9+4\sqrt{5}}\)
c, \(\sqrt{7+\sqrt[]{24}}\)
a, Đặt A = \(\sqrt{2+\sqrt{3}}\)
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
b, \(\sqrt{9+4\sqrt{5}}=\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
c, \(\sqrt{7+\sqrt{24}}=\sqrt{7+2\sqrt{6}}=\sqrt{6+2\sqrt{6}+1}=\sqrt{\left(\sqrt{6}+1\right)^2}=\sqrt{6}+1\)
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)