K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

loading...

Gọi `D` là trung điểm của `BH`

Kẻ `DF` vuông góc `AB` tại `D;DF=AB`

Xét `\triangleFDB` và `\triangleBAC`:

`DF=AB`

`\hat{FDB}=\hat{BAC}=90^o`

`DB=AC`

`=>\triangleFDB=\triangleBAC{c.g.c)`

`=>FB=BC;\hat{FBD}=\hat{BCA}`

`=>\hat{FBD}=90^o - \hat{ABC}=15^o`

`=>\hat{FBC}=\hat{ABC} - \hat{FBD} = 60^o`

Xét `\triangleBFC`, có: `FB=BC=>\triangleBFC` cân tại `B`

Mà `\hat{FBC}=60^o =>\triangleBFC` đều

`=>FC=FB=BC` (*)

Ta có: `F\in` trung trực `BH=>FH=FB` (**)

Từ (*)(**)`=>FH=FC=FB`

Xét `\triangleHFB`, có: `FH=FB=>\triangleHFB` cân tại `F`

Mà `\hat{HBF}=15^o =>\hat{HFB}=180^o -2\hat{HBF}=150^o`

Ta có: `\hat{HFC} + \hat{HFB} + \hat{BFC} = 360^o`

`=>\hat{HFC}=360^o - 150^o - 60^o`

`=>\hat{HFC}=\hat{HFB}=150^o`

Xét `\triangleHFC` và `\triangleHFB`:

`HF` chung

`FC=FB`

`\hat{HFC}=\hat{HFB}`

`=>\triangleHFC=\hat{HFB}(c.g.c)`

`=>\hat{FHC}=\hat{FHB}`

`=>\hat{BHC}=2\hat{FHB}=2\hat{FBH}=30^o`

`=>\hat{BHC}=30^o`

 

 

19 tháng 4 2022

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)