A=(-2;7],B=[0;5)
A.CAB=(-2;0]U[5;7]
B.CAB=(-2;0]U(5;7]
C.CAB=(-2;0)U[5;7]
D.CAB=(-2;0)U(5;7]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VABCA'B'C' = SABC.h
Diện tích của tam giác ABC là: 72 : 9 = 8 (cm2)
SABC = \(\dfrac{1}{2}\)AB.AC = \(\dfrac{1}{2}\)AB2 = 8 ⇒ AB2 = 8.2 = 16
⇒ AB = AC = \(\sqrt{16}\) = 4 (cm)
Vậy độ dài cạnh đáy AB dài 4cm
Gọi số ti vi mỗi loại mà cửa hàng bán được lần lượt là:
\(x;y;z\) (chiếc) \(x;y;z\) \(\in\)N*
Thì số tiền thu được được việc bán mỗi loại ti vi lần lượt là:
20\(x;\) 18\(y\); 15\(z\)
Theo bài ra ta có: 20\(x\) = 18\(y\) = 15\(z\); \(x+y+z=62\)
⇒ \(y\) = \(\dfrac{20}{18}\)\(x\) = \(\dfrac{10}{9}\)\(x\)
z = \(\dfrac{20}{15}\)\(x\) = \(\dfrac{4}{3}x\)
⇒ \(x+\dfrac{10}{9}x+\dfrac{4}{3}x=62\)
\(x\left(1+\dfrac{10}{9}+\dfrac{4}{3}\right)=62\)
\(\dfrac{31}{9}\)\(x\) = 62
\(x\) = 62: \(\dfrac{31}{9}\)
\(x\) = 18
\(y\) = \(\dfrac{10}{9}.18=20\)
\(z=\dfrac{4}{3}.18=24\)
Kết luận: Ti vi sam sung bán được 18 chiếc
Ti vi LG bán được 20 chiếc
Ti vi Xiaomi bán được 24 chiếc
\(x+567+x-67=x+90\\ \Rightarrow\left(x+x\right)+\left(567-67\right)=x+90\\ \Rightarrow2x+500-x-90=0\\ \Rightarrow x+410=0\\ \Rightarrow x=-410\)
vì các số lẻ liên tiếp cách nhau 2 đơn vị => có số số lẻ liên tiếp từ 211 đến 971 là (971-211): 2 +1=381 số Cho mình 5 sao nha
Đáp Án :Vì các số lẻ liên tiếp cách nhau 2 đơn vị => có số số lẻ liên tiếp từ 211 đến 971 là (971-211): 2 +1=381 số
\(\dfrac{2n-3}{n+1}=\dfrac{2\left(n+1\right)-5}{n+1}=2-\dfrac{5}{n+1}\)
Để \(\left(2n-3\right)⋮\left(n+1\right)\Rightarrow5⋮\left(n+1\right)\)
=> \(\left(n+1\right)=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-6;-2;0;4\right\}\)
Ta thấy rằng \(\dfrac{BN}{BC}=\dfrac{AQ}{AD}\), mà \(BC=AD\) nên \(BN=AQ\), cũng có nghĩa ABNQ và CDQN là các hình chữ nhật. Ta kẻ MH và PK vuông góc với QN. Khi đó \(S_{MNPQ}=S_{MNQ}+S_{PNQ}\)
\(=\dfrac{1}{2}\times PQ\times MH+\dfrac{1}{2}\times PQ\times PK\)
\(=\dfrac{1}{2}\times PQ\times\left(MH+PK\right)\)
\(=\dfrac{1}{2}\times AB\times BC\) (do \(PQ=AB\) và \(MH+PK=BC\))
\(=\dfrac{1}{2}\times S_{ABCD}\)
\(=\dfrac{1}{2}\times324=162\left(cm^2\right)\)
vì (x-7)(x+3)<0
=> (x-7) và (x+3) phải trái dấu
=> nếu x-7 < 0 thì x+3 >0
nếu x-7 >0 thì x+3<0
+ xét trường hợp 1
=>x-7<0 =>x<7
x+3>0 => x >-3
hay -3<x<7 ( thõa mãn)
+ xét trường hợp 2:
=> x-7>0 => x>7
x+3<0 = >x<-3
=> vô lí x ko thể lớn hơn 7 mà bé hơn -3
vậy -3<x<7 (bạn tự liệt kê)
Vì (x-7)(x+3)<0
(x-7) phải có dấu (x+3)
Nếu x-7<0 thì x+3>0
- Xét trường hợp x-7<0 thì x+3>0
x-7<0 vậy x<7
x+3>0 vẫy>-3
-3<x<7
Tổng 3 số là
(2x19+2x16+2x15):2=50
Tổng số thứ 1 và thứ 2 là
19x2=38
Số thứ 3 là
50-38=12
Số thứ nhất là
2x15-12=18
Số thứ 2 là
50-(18+12)=20
\(xy-5y+5x-24=12\\ =>y\left(x-5\right)+5\left(x-5\right)+1=12\\ =>\left(x-5\right)\left(y+5\right)=11\)
Bổ sung đề : x,y nguyên
=> x-5,y+5 thuộc Z
Ta có : 11=1.11=(-1).(-11)
Đến đây bạn lập bảng giá trị ra rồi tìm x,y.
xy-5y+5x-24=12
y(x-5)+5(x-5)+1=12
(x-5)(y+5)=11
x,y nguyên
x-5, y+5 thuộc Z
mình chỉ biết làm tới đây thui
Để tìm giao của hai tập hợp A và B, ta cần xác định phần nằm trong cả hai tập hợp. Ta có:
A = (-2;7]
B = [0;5]
Phần nằm trong cả hai tập hợp là đoạn [-2;5], vì nó nằm trong A và cũng nằm trong B.
Vậy, ta có:
A ∩ B = [-2;5]
CAB là bù của A ∩ B trong tập hợp A hoặc B. Vì vậy, ta có:
CAB = (-∞;-2) U (5;7]
Vậy đáp án là D.CAB=(-2;0)U(5;7].
Để tìm giao của hai tập hợp A và B, ta cần xác định phần nằm trong cả hai tập hợp. Ta có:
A = (-2;7]
B = [0;5]
Phần nằm trong cả hai tập hợp là đoạn [-2;5], vì nó nằm trong A và cũng nằm trong B.
Vậy, ta có:
A ∩ B = [-2;5]
CAB là bù của A ∩ B trong tập hợp A hoặc B. Vì vậy, ta có:
CAB = (-∞;-2) U (5;7]
Vậy đáp án là D.CAB=(-2;0)U(5;7].