OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết sin⁴x=a/8-1/2cos2x+b/8cos4x với a,b € Q. Khi đó tổng b²+a bằng?
6. Cho hai hình bình hành ABCD và ABEF không cùng nằm trên một mặt phẳng. Trên đoạn thẳng AC lấy điểm M và trên đoạn thẳng BF lấy điểm N thỏa mãn 1 3 AM BN AC BF . Chứng minh MN DEF
Cho tứ diện A1A2A3A4. Xét 6 mặt phẳng, mỗi mặt phẳng đi qua trung điểm của một cạnh và vuông góc với cạnh đối diện.
a) Chứng minh rằng 6 mặt phẳng này cùng đi qua một điểm M. (Điểm này được gọi là điểm "Monge" của hình tứ diện A1A2A3A4)
b) CMR \(\left\{{}\begin{matrix}\overrightarrow{MA_1}.\overrightarrow{MA_2}=\overrightarrow{MA_3}.\overrightarrow{MA_4}\\\overrightarrow{MA_1}.\overrightarrow{MA_3}=\overrightarrow{MA_2}.\overrightarrow{MA_4}\\\overrightarrow{MA_1}.\overrightarrow{MA_4}=\overrightarrow{MA_2}.\overrightarrow{MA_3}\end{matrix}\right.\)
c) Giả sử M nằm trện một mặt bất kì của tứ diện. CMR chân đường cao ứng với mặt đó nằm trên đường tròn ngoại tiếp của mặt đó.
Một tứ diện được gọi là tứ diện trực tâm khi và chỉ khi tứ diện đó có các cặp cạnh đối vuông góc với nhau. (Tứ diện X.YZT là tứ diện trực tâm thì tương đương với \(XY\perp ZT;XT\perp YZ;XZ\perp YT\)). Cho A1A2A3A4 là một tứ diện trực tâm.
a) Hạ \(A_1X_1\perp\left(A_2A_3A_4\right)\) tại X1. Chứng minh rằng X1 là trực tâm của tam giác A2A3A4.
b) Định nghĩa tương tự cho các điểm X2, X3, X4. Chứng minh rằng các đường thẳng \(A_iX_i\left(i=\overline{1,4}\right)\) đồng quy tại một điểm H (H gọi là trực tâm của tứ diện trực tâm A1A2A3A4).
c) Các tứ diện \(HA_iA_jA_k\left(i\ne j\ne k\right)\) có phải là tứ diện trực tâm hay không? Nếu có thì trực tâm của các tứ diện đó là điểm nào?
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!
Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) . a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn. b) Gọi G là giao của BC và EF, đường thẳng GJ cắt AB, AC lần lượt tại L và N. Lấy các điểm P, Q lần lượt trên các đường thẳng JB, JC sao cho \(\widehat{PAB}=\widehat{QAC}=90^o\). Các đường thẳng LP và NQ cắt nhau tại T. Gọi S là điểm chính giữa cung BAC của (O) và T là giao của AT với (O). Chứng minh rằng đường thẳng ST' đi qua tâm đường tròn nội tiếp tam giác ABC.
Cho hàm số �:[�;�]→[�;�]f:[a;b]→[a;b] liên tục trên [�,�][a,b] với �<�a<b thỏa mãn ∣�(�)−�(�)∣<∣�−�∣∣f(α)−f(β)∣<∣α−β∣, ∀�,�∈[�;�]∀α,β∈[a;b] phân biệt. Chứng minh rằng ∃!�∈[�;�]:�(�)=�∃!γ∈[a;b]:f(γ)=γ
(Ở đây kí hiệu ∃!∃! nghĩa là tồn tại duy nhất)
Cho trước hai số nguyên dương lẻ phân biệt m,n. Xét bảng ô vuông kích thước \(m\times n\) gồm m dòng và n cột. Mỗi ô vuông con của bảng được tô bởi đúng một trong hai màu là xanh hoặc đỏ. Một dòng của bảng gọi là dòng đỏ nếu trên dòng đó có số ô vuông con được tô đỏ nhiều hơn số ô vuông con được tô xanh, một cột của bảng gọi là cột xanh nếu trên cột đó có số ô vuông con được tô xanh nhiều hơn số ô vuông con được tô đỏ.
a) Có bao nhiêu cách tô màu cho bảng sao cho mọi dòng đều là dòng đỏ?
b) Gọi T là tổng của số dòng đỏ và số cột xanh trên bảng. Tìm giá trị lớn nhất của T.
(Câu a mình làm được rồi, các bạn giúp mình câu b với. Mình cảm ơn trước.)
Cho tứ diện ABCD , O là một điểm thuộc miền trong tam giác BCD , M là điểm trên đoạn AO. Tìm giao tuyến của mặt phẳng \((\)MCD) với các mặt phẳng \((\)ABC ).
A.PC trong đó P = DC \(\cap\) AN , N= DO \(\cap\) BC
B. PC trong đó P= DM AN , N = DA BC
C. PC trong đó P = DM \(\cap\)AB , N = DO \(\cap\) BC
D. PC trong đó P=DM \(\cap\) AN , N= DO \(\cap\) BC
: Phép biến đổi nào trong các phép biến đổi sau đây không phải là phép biến đổi tương đương?
A. Cộng hai vế của một phương trình với cùng một số thực dương.
B. Trừ hai vế của một phương trình với cùng một số thực âm.
C. Nhân hai vế của một phương trình với cùng một số thực âm.
D. Bỏ mẫu của phương trình chứa ẩn dưới mẫu