K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2024

Thay tọa độ A và B vào \(\Delta\) ta được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)

M thuộc \(\Delta\Rightarrow MA+MB\ge AB\)

Dấu "=" xảy ra khi M là giao điểm của \(\Delta\) và đường thẳng AB

\(\overrightarrow{AB}=\left(-1;3\right)\Rightarrow\) phương trình AB có dạng:

\(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y+1=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow S=4\)

3 tháng 5 2024

Cái  thì tui chịu

 

a: G là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_G\\y_A+y_B+y_C=3\cdot y_G\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_C+0+4=3\cdot\dfrac{7}{3}=7\\y_C+2+0=3\cdot1=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_C=3\\y_C=1\end{matrix}\right.\)

Vậy: C(3;1)

B(4;0); C(3;1)

\(\overrightarrow{BC}=\left(-1;1\right)\)

=>Vecto pháp tuyến là (1;1)

Phương trình tổng quát của đường thẳng BC là:

1(x-4)+1(y-0)=0

=>x-4+y=0

=>x+y-4=0

Bài 12:

a: (d): \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)

=>(d) đi qua T(-2;1) và có vecto chỉ phương là (-2;2)

(d')\(\perp\)(d) nên (d') nhận vecto (-2;2) làm vecto pháp tuyến

Phương trình (d') là:

-2(x-3)+2(y-1)=0

=>-(x-3)+(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

b: (d) có vecto chỉ phương là (-2;2)

=>(d) có vecto pháp tuyến là (2;2)=(1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+2+y-1=0

=>x+y+1=0

Tọa độ giao điểm H của (d) và (d') là:

\(\left\{{}\begin{matrix}x+y+1=0\\-x+y+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=-1\\-x+y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1-x=-1+\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)

c: A' đối xứng với A qua d

=>A'A\(\perp\)d

mà d'\(\perp\)d và \(A\in d'\)

nên d' chính là phương trình AA'

=>H là trung điểm của A'A

A(3;1); H(-3/2;1/2); A'(x;y)

H là trung điểm của A'A

=>\(\left\{{}\begin{matrix}x_A+x_{A'}=2\cdot x_H=-3\\y_A+y_{A'}=2\cdot y_H=2\cdot\dfrac{1}{2}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_{A'}+3=-3\\y_A+1=1\end{matrix}\right.\)

=>A'(-6;0)

Bài 13:

a: M(2;-5); N(4;-3)

Tọa độ tâm I là:

\(\left\{{}\begin{matrix}x=\dfrac{2+4}{2}=\dfrac{6}{2}=3\\y=\dfrac{-5+\left(-3\right)}{2}=-\dfrac{8}{2}=-4\end{matrix}\right.\)

I(3;-4); M(2;-5)

\(IM=\sqrt{\left(2-3\right)^2+\left(-5+4\right)^2}=\sqrt{2}\)

Phương trình (C) là:

\(\left(x-3\right)^2+\left(y+4\right)^2=IM^2=2\)

b: (C) có tâm là I(1;-2) và tiếp xúc với đường thẳng 4x-3y+5=0

=>Bán kính là \(R=d\left(I;4x-3y+5=0\right)=\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+5\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{15}{5}=3\)

Phương trình (C) là:

\(\left(x-1\right)^2+\left(y+2\right)^2=R^2=9\)

c: Gọi phương trình (C) là: \(x^2+y^2+2ax+2by+c=0\)

Thay x=1 và y=0 vào (C), ta được:

\(1^2+0^2+2\cdot a\cdot1+2\cdot b\cdot0+c=0\)

=>2a+c=-1(1)

Thay x=0 và y=-2 vào (C), ta được:

\(0^2+\left(-2\right)^2+2\cdot a\cdot0+2\cdot b\cdot\left(-2\right)+c=0\)

=>4-4b+c=0

=>-4b+c=-4(2)

Thay x=2 và y=3 vào (C), ta được:

\(2^2+3^2+2\cdot a\cdot2+2\cdot b\cdot3+c=0\)

=>4a+6b+c=-13(3)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+c=-1\\-4b+c=-4\\4a+6b+c=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+4b=-1+4=5\\-2a-6b=-1+13=12\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2b=5+12=17\\2a+4b=5\\2a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\2a=5-4b=5-4\cdot\dfrac{-17}{2}=5+34=39\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\a=\dfrac{39}{2}\\c=-1-2a=-1-2\cdot\dfrac{39}{2}=-40\end{matrix}\right.\)

Vậy: (C): \(x^2+y^2+39x-17y-40=0\)

 

2 tháng 5 2024

TK:

Để khai triển biểu thức \((x - 5)^4\), ta có thể sử dụng công thức khai triển Newton hoặc sử dụng quy tắc nhị thức của Pascal. Tuy nhiên, trong trường hợp này, để đơn giản, chúng ta có thể sử dụng quy tắc nhị thức để thực hiện khai triển:

Bằng quy tắc nhị thức, ta có:

\[(x - 5)^4 = \binom{4}{0}x^4(-5)^0 + \binom{4}{1}x^3(-5)^1 + \binom{4}{2}x^2(-5)^2 + \binom{4}{3}x^1(-5)^3 + \binom{4}{4}x^0(-5)^4\]

\(= x^4 + \binom{4}{1}x^3(-5) + \binom{4}{2}x^2(25) + \binom{4}{3}x(-125) + (-5)^4\)

\(= x^4 - 20x^3 + 100x^2 - 500x + 625\)

Vậy kết quả của khai triển biểu thức \((x - 5)^4\) là \(x^4 - 20x^3 + 100x^2 - 500x + 625\).

2 tháng 5 2024

2 tháng 5 2024

Hoán vị 3 bạn nữ thành 1 nhóm hàng ngang:

=> có 3! cách xếp

Hoán vị nhóm gồm 3 bạn nữ với 7 nam  là hoán vị 8 phần tử :

=-> 8 ! cách xếp

Tổng số cách xếp thỏa là : 3!.8! cách

1 tháng 5 2024

Yêu cầu là gì thế bạn?

 

1 tháng 5 2024

cho mik đề bài