có thể tìm a và b ko:(a+b)*(a-b)=2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)
\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}=3\)
\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\)
\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)
a: Xét ΔAHB vuông tại H và ΔABC vuông tại B có
\(\widehat{HAB}\) chung
Do đó: ΔAHB~ΔABC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HA^2=HB\cdot HC\)
c: ta có: BH\(\perp\)AC
AD\(\perp\)AC
Do đó: BH//AD
Xét ΔCDO có BI//DO
nên \(\dfrac{BI}{DO}=\dfrac{CI}{CO}\left(1\right)\)
Xét ΔCOA có IH//OA
nên \(\dfrac{IH}{OA}=\dfrac{CI}{CO}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{BI}{DO}=\dfrac{IH}{OA}\)
mà DO=OA
nên BI=IH
=>I là trung điểm của BH
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{CD}{AC}=\dfrac{BD}{AB}\)
=>\(\dfrac{CD}{5}=\dfrac{2}{3}\)
=>\(CD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
\(BC=BD+CD=\dfrac{10}{3}+2=\dfrac{16}{3}\left(cm\right)\)
b: Xét ΔBAD có BI là phân giác
nên \(\dfrac{AI}{ID}=\dfrac{BA}{BD}\)
=>\(\dfrac{AI}{ID}=\dfrac{CA}{CD}\)
=>\(AI\cdot CD=CA\cdot ID\)
Gọi diện tích ruộng mà đội đã nhận cày là x (ha) với x>0
Theo kế hoạch đội phải cày trong số ngày là: \(\dfrac{x}{40}\) ngày
Thực tế đội cày được diện tích là: \(x+4\) (ha)
Thực tế đội cày trong số ngày là: \(\dfrac{x+4}{52}\) ngày
Do đội hoàn thành sớm hơn kế hoạch 2 ngày nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x+4}{52}=2\)
\(\Leftrightarrow52x-40\left(x+4\right)=4160\)
\(\Leftrightarrow12x=4320\)
\(\Leftrightarrow x=360\left(ha\right)\)
1.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Do M là trung điểm AB, N là trung điểm AC \(\Rightarrow MN\) là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC=5\left(cm\right)\)
b.
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Leftrightarrow\dfrac{BD}{AB}=\dfrac{BC-BD}{AC}\)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{10-BD}{8}\)
\(\Leftrightarrow4BD=3\left(10-BD\right)\)
\(\Leftrightarrow7BD=30\)
\(\Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=10-BD=\dfrac{40}{7}\left(cm\right)\)
a.
\(A=\left(\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{5}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{x^2-1}\)
\(=\left(\dfrac{2\left(x-1\right)-\left(x+1\right)+5}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(=\dfrac{x+2}{2x+1}\)
b.
\(A=3\Rightarrow\dfrac{x+2}{2x+1}=3\)
\(\Rightarrow x+2=3\left(2x+1\right)\)
\(\Rightarrow x+2=6x+3\)
\(\Leftrightarrow5x=-1\Leftrightarrow x=-\dfrac{1}{5}\)
c.
\(A\) nguyên \(\Rightarrow2A\) nguyên \(\Rightarrow\dfrac{2x+4}{2x+1}\in Z\)
\(\Rightarrow\dfrac{2x+1+3}{2x+1}\in Z\Rightarrow1+\dfrac{3}{2x+1}\in Z\)
\(\Rightarrow\dfrac{3}{2x+1}\in Z\)
\(\Rightarrow2x+1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-2;-1;0;1\right\}\)
Giải:
a; Chiều dài của mảnh đất hình chữ nhật là:
36 x \(\dfrac{5}{12}\) = 15 (m)
Chu vi của mảnh đất hình chữ nhật là:
(36 + 15) x 2 = 102 (m)
Diện tích mảnh đất là:
36 x 15 = 540 (m2)
b; Diện tích đất trồng ngô là:
540 x \(\dfrac{2}{3}\) = 360 (m2)
c; Trên mảnh đất đó thu được số ngô là:
4 x 360 = 1440 (kg)
Đáp số: a; chu vi của nảnh đất hình chữ nhật là 102 m
Diện tích của mảnh đất hình chữ nhật là 540 m2
b; 360 m2
c; 1440 kg ngô
a; 3\(x\) + (\(x\) - 5) = 7 - (5\(x\) - 4)
3\(x\) + \(x\) - 5 = 7 - 5\(x\) + 4
4\(x\) - 5 = 11 - 5\(x\)
4\(x\) + 5\(x\) = 11 + 5
9\(x\) = 16
\(x\) = \(\dfrac{16}{9}\)
Vậy \(x\) = \(\dfrac{16}{9}\)
b; \(\dfrac{2\left(x-3\right)}{4}\) - \(\dfrac{1}{2}\) = \(\dfrac{6x+9}{3}\) - 2
\(\dfrac{x-3}{2}\) - \(\dfrac{1}{2}\) = 2\(x\) + 3 - 2
\(x\) - 3 - 1 = (2\(x\) + 3 - 2).2
\(x-4\) = (2\(x\) + 1).2
\(x\) - 4 = 4\(x\) + 2
\(x\) - 4\(x\) = 4 + 2
-3\(x\) = 6
\(x\) = 6 : (-3)
\(x=-2\)
Vậy \(x=-2\)