Tính giá trị căn thức;
C=\(\sqrt{20+\sqrt{20+\sqrt{20+...}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}-1}-\frac{3\sqrt{5}+5}{\sqrt{5}+3}+\frac{2}{\sqrt{2}}\)
\(A=\frac{\sqrt{5}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\frac{3\sqrt{5}+\left(\sqrt{5}\right)^2}{\sqrt{5}+3}+\frac{\left(\sqrt{2}\right)^2}{\sqrt{2}}\)
\(A=\sqrt{5}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}+\sqrt{2}\)
\(A=\sqrt{5}-\sqrt{5}+\sqrt{2}\)
\(A=\sqrt{2}\)
\(A=\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}-1}-\frac{3\sqrt{5}+5}{\sqrt{5}+3}+\frac{2}{\sqrt{2}}\)
\(=\sqrt{5}-\sqrt{5}+\sqrt{2}=\sqrt{2}\)
\(20-6\sqrt{11}\)
\(\left(\sqrt{11}\right)^2-6\sqrt{11}+9\)
\(\left(\sqrt{11}\right)^2-6\sqrt{11}+3^2\)
\(\left(\sqrt{11}-3\right)^2\)
dễ thấy \(\sqrt{11}>3< =>\sqrt{11}-3>0\)
\(\left(\sqrt{11}-3\right)^2\)
\(\left|\sqrt{11}-3\right|\)
\(\sqrt{11}-3\)
Gọi giá 1kg cam và táo lần lượt là x,y (đồng; x,y\(\ge\)0)
Theo bài ra:
Mai mua 5kg cam và 5 kg táo hết 10.000 đồng
=> 5x+5y=10.000(1)
Lan mua 3kg cam và 7kg táo hết 9.600 đồng
=> 3x+7y=9.600(2)
Từ (1) và (2) ta có hpt:
\(\hept{\begin{cases}5x+5y=10.000\\3x+7y=9.600\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}15x+15y=30.000\\15x+35y=48.000\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-20y=-18.000\\5x+5y=10.000\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=900\\x=1.100\end{cases}}\left(TM\right)\)
Vậy giá 1 kg cam là 1.100 đồng
giá 1 kg táo là 900 đồng
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Xét ta, giác OAB có
\(\hept{\begin{cases}AB=R\sqrt{2}\\OA=OB=R\end{cases}}\)\(\Rightarrow\Delta OAB\) vuông cân tại O
Nên Góc AOB=90 độ
Với \(x>0;x\ne9\)
Ta có : \(P=A.B\Rightarrow P=\frac{\sqrt{x}-1}{2\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{\sqrt{x}-1}{2\sqrt{x}-6}\)
Để biểu thức trên nhận giá trị nguyên khi
\(\sqrt{x}-1⋮2\sqrt{x}-6\Leftrightarrow2\sqrt{x}-2⋮2\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}-6+4⋮2\sqrt{x}-6\Leftrightarrow4⋮2\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}-6\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(2\sqrt{x}-6\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(2\sqrt{x}\) | 7 | 5 | 8 | 4 | 10 | 2 |
\(\sqrt{x}\) | 7/2 ( loại ) | 5/2 ( loại ) | 4 | 2 | 5 | 1 |
x | loại | loại | 2 | \(\sqrt{2}\)( loại ) | \(\sqrt{5}\)( loại ) | 1 |
Vậy x = 1 ; 2 thì biểu thức trên nhận giá trị nguyên
Để tìm chiến thuật chơi để An là người thắng cuộc, ta cần xem xét các trường hợp có thể xảy ra.
Trong trường hợp này, số viên kẹo trong hai túi là 18 và 21. Ta có thể tạo bảng để phân tích các trường hợp:
| Lượt chơi | Túi 1 (18 viên) | Túi 2 (21 viên) |
|-----------|----------------|----------------|
| 1 | 17 | 20 |
| 2 | 16 | 19 |
| 3 | 15 | 18 |
| 4 | 14 | 17 |
| 5 | 13 | 16 |
| 6 | 12 | 15 |
| 7 | 11 | 14 |
| 8 | 10 | 13 |
| 9 | 9 | 12 |
| 10 | 8 | 11 |
| 11 | 7 | 10 |
| 12 | 6 | 9 |
| 13 | 5 | 8 |
| 14 | 4 | 7 |
| 15 | 3 | 6 |
| 16 | 2 | 5 |
| 17 | 1 | 4 |
| 18 | 0 | 3 |
Dựa vào bảng trên, ta nhận thấy rằng nếu An chơi một cách thông minh, an sẽ luôn giữ số viên kẹo trong hai túi ở cùng một mức. Điều này đảm bảo rằng Bình sẽ không thể lấy hết kẹo từ một túi nào đó và An sẽ luôn có cơ hội lấy kẹo từ túi còn lại.
Vì vậy, chiến thuật chơi của An là giữ số viên kẹo trong hai túi ở cùng mức. Khi Bình lấy đi một viên kẹo từ một túi, An sẽ lấy đi một viên kẹo từ túi còn lại để duy trì số viên kẹo ở cùng mức.
Với chiến thuật này, An sẽ luôn là người thắng cuộc vì An có thể điều khiển trò chơi sao cho Bình không thể lấy hết kẹo từ một túi nào đó.
Bạn đầu tiên không thể thực hiện lượt chơi của mình nghĩa là sao ạ
\(c=\sqrt{20+\sqrt{20+\sqrt{20+...}}}\)
\(\Leftrightarrow c^2=20+\sqrt{20+\sqrt{20+\sqrt{20+...}}}\)
\(\Leftrightarrow c^2=20+c\)
\(\Leftrightarrow\orbr{\begin{cases}c=5\\c=-4\left(l\right)\end{cases}}\)