K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$y^2+2^2\geq 4y$

$2(x^2+y^2)\geq 4xy$

$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$

$\Rightarrow x^2+y^2\geq 8$

Vậy $P_{\min}=8$ khi $x=y=2$

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:
$(\sqrt{2}x+\sqrt{8}y)^2=(\sqrt{2}x)^2+(\sqrt{8}y)^2+2\sqrt{2}x.\sqrt{8}y$

$=2x^2+8y^2+8xy$

29 tháng 6 2023

Đề yêu cầu gì đó em?

27 tháng 6 2023

A B C D

\(\widehat{A}+\widehat{D}=70^o+110^o=180^o\) 

=> ABCD là tứ giác nội tiếp (tứ giác có tổng 2 góc đối =180 là tứ giác nt)

\(\widehat{ABD}=\widehat{ACD}\) (góc nt cùng chắn cung AD) (1)

\(\widehat{CBD}=\widehat{CAD}\) (góc nt cùng chắn cung CD) (2)

Tg ADC cân tại D \(\Rightarrow\widehat{ACD}=\widehat{CAD}\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}=\widehat{CBD}\)

25 tháng 6 2023

loading...

a, Xét \(\Delta\)BAH và \(\Delta\)BCA có: \(\widehat{ABC}\)  chung; \(\widehat{AHB}\) = \(\widehat{BAC}\) = 900

\(\Delta\)BAH \(\sim\)\(\Delta\)BCA (g-g)

\(\dfrac{BA}{BC}=\dfrac{AH}{CA}=\dfrac{BH}{BA}\)

b, Theo pytago ta có: BC2 = AB2 + AC2 = 152+162 = 481 (cm2)

⇒ BC = \(\sqrt{481}\) cm

Kẻ đường cao DK vuông góc với BC cắt BC tại K 

DA = DK ( vì mọi điểm trên tia phân giác thì cách đều hai cạnh còn lại)

Vì \(\Delta\)ABD và \(\Delta\)BCD có đường cao bằng nhau nên tỉ số diện tich hai tam giác bằng tỉ số hai cạnh đáy và bằng:

\(\dfrac{AB}{BC}\) = \(\dfrac{15}{\sqrt{481}}\)  

Tương tự ta có tỉ số diện tích hai tam giác, tam giác ABD và tam giác BCD bằng:

\(\dfrac{AD}{DC}\) ⇒ \(\dfrac{AD}{DC}\) = \(\dfrac{15}{\sqrt{481}}\) ⇒ \(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\) = \(\dfrac{AD+DC}{15+\sqrt{481}}\) = \(\dfrac{16}{15+\sqrt{481}}\) 

AD = \(\dfrac{16}{15+\sqrt{481}}\)\(\times\)15 = \(\dfrac{240}{15+\sqrt{481}}\) = \(\dfrac{15}{16}\)(\(\sqrt{481}\) - 15)

DC = \(\dfrac{16}{15+\sqrt{481}}\) \(\times\) \(\sqrt{481}\) = \(\dfrac{1}{16}\)(481 - 15\(\sqrt{481}\))

 

 

 

 

 

25 tháng 6 2023

Đổi 120 000 l = 120 m3 

Chiều cao của hồ nước cũng chính là độ sâu của hồ và bằng:

120 : ( 8 \(\times\) 3) = 5 (m)

Kết luận chiều sâu của hồ nước là 5m 

25 tháng 6 2023

Đổi \(120000l=120m^3\)

Ta có : \(V=d.r.h\Rightarrow h=\dfrac{V}{d.r}=\dfrac{120}{8.3}=\dfrac{120}{24}=5\left(m\right)\)

Vậy độ sâu của hồ nước là 5m.

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Cái bạn viết chưa phải 1 phương trình nhé. Bạn xem lại.

23 tháng 6 2023

ò ra vậy thank bạn