Chứng minh rằng giá trị của các đa thức sau không phụ thuộc vào x:
a) h(x)=(x-1).(x^2+x+1)-(x+1).(x^2-x+1)
b) k(x)=2x.(4x+1)-8x^2.(x+1)+(2x)^3-2x+3
Giúp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trả lời
Số 20 là số ta cần tìm vì :
(số ở cột đầu tiên) / (số ở cột thứ hai ) * 8 = số ở cột thứ ba.
chúc bn hc tốt
\(a,=x\left(\frac{3}{7}x+6+xy\right)\)
\(b,=\left(x+3y\right)\left(3x-6xy\right)=\left(x+3y\right).3x\left(1-2y\right)\)
\(c,=x\left(x+y\right).\left(-5\right)\left(x+y\right)=\left(x+y\right)\left[x.\left(-5\right)\right]\)
\(d,=3\left(x-y\right)+5x\left(x-y\right)=\left(x-y\right)\left(3+5x\right)\)
\(B3.a,x\left(1+6x\right)=0\)
\(Th1:x=0\)
\(Th2:1+6x=0=>x=-\frac{1}{6}\)
Vậy \(x\in\left\{0;-\frac{1}{6}\right\}\)
\(b,\left(x+3\right)\left(2-x\right)=0\)
\(Th1:x+3=0=>x=-3\)
\(Th2:2-x=0=>x=2\)
Vậy \(x\in\left\{-3;2\right\}\)
\(c,5x\left(x-2\right)+\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x+1\right)=0\)
\(Th1:x-2=0=>x=2\)
\(5x +1=0=>x=-\frac{1}{5}\)
Vậy \(x\in\left\{-\frac{1}{5};2\right\}\)
Ta có: a^3+b^3 = (a+b)(a^2-ab+b^2)
= a^3-a^2b+ab^2+a^2b-ab^2+b^3
= a^3-3a^2b+2a^2b+3ab^2-2ab^2+3a^2b-2a^2b-3ab^2+2ab^2+b^3
= (a^3+3a^2b+3ab^2+b^3)-(3a^2b+3ab^2)+(2a^2b-2a^2b)+(2ab^2-2ab^2)
= (a+b)^3-3ab(a+b) (đpcm)
a3 + b3 = ( a + b ) 3 - 3ab( a + b )
a3 + b3 =a^3+3a^2b+3ab^2-3a^b-3ab^2
a3 + b3 =a^2+b^2(đpcm)
`a,`
`(1/3 a + 4y)^2`
`= (1/3 a)^2 + 2 . 1/3a . 4y + (4y)^2`
`=1/9 a^2 + 8/3 ay + 16y^2`
`b,`
`(1/x - 3/y)^2`
`= (1/x)^2 - 2 . 1/x . 3/y + (3/y)^2`
`= 1/x^2 - 6/(xy) + 9/y^2`
a) h(x)=(x-1).(x^2+x+1)-(x+1).(x^2-x+1)
=(x^3=1)-(x^3-1)
=x^3+1-x^3+1
=0
=> giá trị của đa thức không phụ thuộc vào x
`a,`
`h (x)=(x-1)(x^2 +x+1) -(x+1)(x^2 - x+1)`
`-> h (x) = x^3 - 1 - (x^3 + 1)`
`-> h (x) = x^3 - 1 - x^3 - 1 = -2`
`->` BT `h (x)` có GT không phụ thuộc vào biến `x`
`b,`
`k (x) = 2x (4x+1)-8x^2 (x+1)+(2x)^3 - 2x+3`
`-> k (x) = 8x^2 + 2x - 8x^3 - 8x^2 + 8x^3 - 2x+3`
`-> k (x) = 3`
`->` BT `k (x)` có GT không phụ thuộc vào biến `x`