tính
\(a.\frac{x}{x-y}-\frac{y}{y-x}+1\)
\(b.\frac{4}{x+2}-\frac{3}{2-x}+\frac{5x+2}{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E F
Hình mik vẽ không có đo nên các trung điểm mik lấy đại, có thể hơi lêch một tí.
a, Xét tam giác ABM và tam giác DCM
Ta có: AM = DM ( giả thiết)
góc AMB = góc AMC ( đối đỉnh)
BM = CM ( M là trung điểm BC)
Do đó: tam giác ABM = tam giác DCM ( c-g-c)
b, Ta có: tam giác ABM = tam giác DCM ( chứng minh trên)
góc ABM = góc DCM
Mà hai góc này nằm ở vị trí so le trong.
Suy ra: AB // CD
c,Xét tam giác BEM và tam giác CFM
Ta có: góc EMB = góc FMC ( đối đỉnh)
BM = CM ( M là trung điểm BC)
góc BEM = góc CFM = 90 độ ( BE vuông góc AM, CF vuông góc DM)
Do đó: tam giác BEM = tam giác CFM( cạnh huyền, góc nhọn)
Suy ra: EM = FM
Mà E, F, M thẳng hàng ( cùng thuộc AD)
Vậy M là trung điểm EF.
Vì \(a+b+c=2016\Rightarrow a=2016-\left(b+c\right);b=2016-\left(a+c\right);c=2016-\left(a+b\right)\)
Ta có:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(a+c\right)}{a+c}+\frac{2016-\left(a+b\right)}{a+b}\)
\(S=\frac{2016}{b+c}-1+\frac{2016}{a+c}-1+\frac{2016}{a+b}-1\)
\(S=2016.\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(S=2016.\frac{1}{2016}-3\)
\(S=-2\)
Ta có:\(TH1:\left(3x+1\right)^2-\left(1-2x\right)^2=\left(3x+1+1-2x\right)\left(3x+1-1+2x\right)=\left(x+2\right)\left(5x\right)\)
Còn ra hằng đẳng thức thì mk chịu
Ta có
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Ta có
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
Ta có \(cxy+ayz+bxz=0\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy
\(D=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-3\left(x-1\right)}{\left(x-1\right)^2}\)
Đặt: x-1=y=>x=y+1. Ta có:
\(D=\frac{\left(y+1\right)^2-3y}{y^2}=\frac{y^2-y+1}{y^2}=1-\frac{1}{y}+\frac{1}{y^2}\)
Đặt: \(\frac{1}{y}=t\Rightarrow D=1-t+t^2\ge\frac{3}{4}\\ D=\frac{3}{4}\Leftrightarrow\left(t-\frac{1}{2}\right)^2=0\Rightarrow t=\frac{1}{2}\)
\(t=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{1}{2}\Rightarrow y=2\Leftrightarrow x-1=2\Rightarrow x=3\)
Vậy minD=\(\frac{3}{4}\Leftrightarrow x=3\)
D=\(\frac{x.x-3x+3}{x.x-2x+1}\)
D=\(\frac{x.\left(x-3\right)+3}{x.\left(x-2\right)+1}\)
D=\(\frac{x-3+3}{x-2+2}\)(Chia cả tử và mẫu cho x lần)
D=\(\frac{x}{x}\)
D=1
A=(8xy-6x^2)/(12y^2-9xy)
A=2x(4y-3x)/3y(4y-3x)
A=2x/3y
B=(2x^3-18x)/(x^4-81)
B=2x(x^2-9)/(x^2-9)(x^2+9)
B=2x/(x^2+9)
C=(x^2-x-30)/(x^2-25)
C=(x^2+6x-5x-30)/(x^2-25)
C=(x(x+6)-5(x+6))/(x-5)(x+5)
C=(x+6)(x-5)/(x-5)(x+5)
C=(x+6)/(x+5)
a.\(=\frac{x}{x-y}+\frac{y}{x-y}+1=\frac{x+y+x-y}{x-y}=\frac{2x}{x-y}\)
b. \(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x+2}{\left(x-2\right).\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x-2}{\left(x-2\right).\left(x+2\right)}\)
\(=\frac{2x-4}{\left(x-2\right).\left(x+2\right)}=\frac{2.\left(x-2\right)}{\left(x-2\right).\left(x+2\right)}=\frac{2}{x+2}\)
k mik nhé. tks bạn nhiều
a)\(\frac{x}{x-y}-\frac{y}{y-x}+1=\frac{x}{x-y}-\frac{y}{-\left(x-y\right)}+1=\frac{x+y}{x-y}+1=\frac{2x}{x+y}\)
b)\(\frac{4}{x+2}-\frac{3}{2-x}+\frac{5x+2}{4-x^2}=\frac{7}{x+2}-\frac{5x+2}{\left(x-2\right)\left(x+2\right)}=\frac{2x-2}{\left(x-2\right)\left(x+2\right)}\)