Tìm x biết: \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
(a, b, c \(\ne\) 0, a+b+c\(\ne\)0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương
BÀI 2:
cho a,b,c là các số thực thỏa mãn: \(1\le a\), \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN: \(M=a^2+b^2+c^2\)
(Lớp 8 mà học đa thức bất khả quy rồi sao???)
Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".
1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).
2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:
Thì đa thức này bất khả quy.
-----
Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:
Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!
Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều
Ta có 216-16= 65520=24 x 32 x 5 x 7 x 13
Vậy thứa số nguyên tố lớn nhất là 13
9000=3^2.1000=3^2.10^3=3^2.2^3.5^3
3^2.2^2.5^2=(3.2.5)^2=900
DS: 900 đúng
\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)
\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)
+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)
+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)
như vậy là phương trình vô nghiệm
Sai rồi nha bạn Nguyễn Thuỳ Trang.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.
Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.