Tìm các số tự nhiên n sao cho \(19+3^n\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Khai bút thoi nào,hy vọng năm mới nhiều may mắn :)
Ký hiệu như hình vẽ nhá :)
Áp dụng định lý đường phân giác ta có:
\(\frac{CE}{CA}=\frac{BC}{AB}=\frac{a}{c}\Rightarrow\frac{CE}{CA+CE}=\frac{a}{a+c}\Rightarrow\frac{CE}{b}=\frac{a}{a+c}\Rightarrow CE=\frac{ab}{a+c}\)
Áp dụng định lý đường phân giác lần nữa:
\(\frac{BO}{OE}=\frac{BC}{CE}=a\cdot\frac{a+c}{ab}=\frac{a+c}{b}\Rightarrow\frac{BO}{OE+OB}=\frac{a+c}{a+b+c}=\frac{BO}{BE}\)
Chứng minh tương tự:\(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)
Mà \(\frac{BO}{BE}\cdot\frac{CO}{CF}=\frac{1}{2}\) nên \(\frac{a+c}{a+b+c}\cdot\frac{a+b}{a+b+c}=\frac{1}{2}\Rightarrow\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)
\(\Rightarrow2a^2+2ab+2ac+2cb=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow a^2=b^2+c^2\)
=> đpcm

\(\orbr{\begin{cases}x^3=-1\\x^3=8\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)


Từ 1/a + 1/b + 1/c = 2 bình phương 2 vế ta có
( 1/a + 1/b + 1/c )^2 = 4
1/a^2 + 1/b^2 + 1/c^2 + 2( 1/ab + 1/bc + 1/ac ) = 4
1/a^2 + 2/b^2 + 1/c^2 + 2(a +b +c)abc = 4 ( quy đồng MTC là abc)
1/a^2 + 1/b^2 + 1/c^ + 2abc. abc = 4( vì a+b+c = abc)
1/a^2 + 1/b^2 + 1/c^2 +2 =4
1/a^2 + 1/b^2 + 1/c^2 = 2 ( đpcm)
n = 4
k cho minh nha