cho tam giác ABC có m,n lần lượt là trung điểm của AB và AC. Biết diện tích tam giác ABC là 20cm^2. Tính diện tích Amn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)

\(U\left(n\right)=n^3-n^2-7n+1\)
U(0)=1;U(2)==-9;U(3)=-1;U(4)=21
Đặt n=(p+4) {xét luôn dương đỡ loạn)
\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương
\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)
\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)
với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)
với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố
với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố
với p=3k+1=>p(p+1)^2 chia 3 dư 1
xét tiếp:
với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại
=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại
"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:
Tạm chấp nhận p=3; n=7 (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)

mk nghĩ là 92 hoặc là 89
nếu đúng tk cho mk nhé ai tk cho mình , mình tk lại
Thank you very much

(x^2+y^2)^2=x^4+y^4+2(xy)^2=(x^4+y^4)+2.6^2=15^2=>x^4+y^4=15^2-2.36=36(25-2.4)=36.17
\(S_{AMN}=\frac{1}{2}S_{ANB}\) do chung đường cao hạ từ N xuống AB, AM = \(\frac{1}{2}AB\)
Tương tự, \(S_{ANB}=\frac{1}{2}S_{ABC}\)
\(\Rightarrow S_{AMN}=\frac{1}{2}.\left(\frac{1}{2}.S_{ABC}\right)=\frac{S_{ABC}}{4}=\frac{20}{4}=5\)
Vậy ....
giỏi quá!