Cho x , y thuộc N* sao cho x+1 và y+2013 chia hết cho 6
CMR : 4 ^x + x + y chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1
Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:
M = (1 + a)(1 + b)(1 + c)
M = (1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + ( a + b + c) + (ab + bc + ac) + abc
M = 1 + 2 + (-5) + 3
M = (1+2+3) - 5
M = 1
|\(x\)| = 1 ⇒ \(x^2\) = 1
Thay \(x\)2 = 1 vào biểu thức M ta có:
M = (1 + a)(1 +b)(1+c)
M = ( 1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + (a+b+c) + (ab+bc + ac) + abc
M = 1 + 2 - 5 + 3
M = 1
a,
(\(x\) + y + z)2
= ((\(x\) + y) + z)2
= (\(x\)+y)2+2(\(x\)+y)z+ z2
= \(x^2\) + 2\(x\)y+ y2 + 2\(x\)z + 2yz + z2
= \(x^2\) + y2 + z2 + 2\(xy\) + 2yz + 2\(x\)z
b, (\(x\)+y+z)(\(x^2\) + y2 + z2 - \(xy\) - yz - \(x\)z)
= \(x^3\) + \(x\)y2 + \(x\)z2 - \(x^2\)y - \(x\)yz - \(x^2\)z + y\(x^2\) + y3 + yz2 - \(x\)y2 - y2z - \(xyz\) +
+ z\(x^2\) + zy2 + z3 - \(xyz\) - yz2 - \(x\)z2
= \(x^{3^{ }}\)+y3+z3 - 3\(x\)yz + (\(x\)z2 - \(x\)z2) - (\(x^2\)y- \(x^2\)y) - (\(x^2\)z - \(x^{2^{ }}\)z) + (y2\(x\) - y2\(x\)) - (y2z - y2z) + (z2y - z2y)
= \(x^3\) + y3 + z3 - 3\(xyz\)
c,
VT = (\(x\) + y + z)3
VT = (\(x\) + y)3 + 3(\(x\)+y)2z + 3(\(x\) +y)z2 + z3
VT = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 + 3(\(x\)+y)z(\(x+y+z\)) + z3
VT = \(x^3\)+ y3 + z3 + 3\(xy\)(\(x\) +y) + 3(\(x+y\))z(\(x+y+z\))
VT = \(x^3\) + y3 + z3 + 3(\(x+y\))(\(xy\) + z\(x\) + zy + z2)
VT = \(x^3\) + y3 + z3 + 3(\(x\) + y){ (\(xy+xz\)) + (zy +z2)
VT = \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\) (y+z) + z(y+z)}
VT = \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\))
VT = VP (đpcm)
Bài 1:
Ta có \(\widehat{BAC}\) = 3600 - 1000 - 1200 = 1400
⇒\(\widehat{BAC}\) = \(\widehat{ACD}\) = 1400
⇒ AB//CD
Bài 16:
Oy \(\perp\) Ox
Az \(\perp\) Ox
⇒ Oy // Az (vì hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song song với nhau).
Ta có \(\widehat{AOm}\) = 900 : 2 = 450 ( vì Om là phân giác của \(\widehat{xOy}\))
\(\widehat{xAn}\) = 900 : 2 = 450 (vì An là phân giác của \(\widehat{xAz}\))
\(\Rightarrow\) \(\widehat{AOM}\) = \(\widehat{xAn}\)
\(\Rightarrow\) Om //On ( vì hai đường thẳng cùng cắt đường thẳng thứ ba tạo thành hai góc đồng vị bằng nhau)
Số số chẵn là: 16 + 2 = 18 (số chẵn)
Hiệu hai số là: 2 \(\times\)( 18 - 1) = 34
Ta có sơ đồ:
Theo sơ đồ ta có:
Số chẵn bé là: (206 - 34): 2 = 86
Số chẵn lớn là: 86 + 34 = 130
Đáp sô: số chẵn bé 86
số chẵn lớn 130
Đăng có nhiều hơn Tuấn 67 viên bi. Sau khi Đăng cho Tuấn một số viên bi thì Đăng có it hơn Tuấn 8 viên bi. Hỏi Đăng cho Tuấn bao nhiêu viên bi ?
Các bạn hãy giúp mình đi !
Số số chẵn là: 2 + 2 = 4 (số chẵn)
Hiệu hai số chẵn cần tìm là: 2\(\times\)(4-1) = 6
Ta có sơ đồ:
Theo sơ đồ ta có:
Số chẵn lớn là: ( 30 + 6): 2 = 18
Số chẵn bé là: 18 - 6 = 12
Đáp số: số chẵn bé 12
số chẵn lớn 18
Tuổi mẹ và tuổi con hiện nay là:
44 + 4 \(\times\) 2 = 52 (tuổi)
Ta có sơ đồ:
Theo sơ đồ ta có, tuổi con hiện nay là:
(52 - 30):2 = 11 (tuổi)
Tuổi mẹ hiện nay là:
11 + 30 = 43 (tuổi)
Đáp số: Tuổi mẹ hiện nay 41 tuổi
Tuổi con hiện nay 11 tuổi
Bài 1 :
\(A=-x^2+6x+14\)
\(A=-x^2+6x-9+23\)
\(A=-\left(x^2-6x+9\right)+23\)
\(A=-\left(x-3\right)^2+23\)
Vì \(-\left(x-3\right)^2\le0\)
\(\Rightarrow A=-\left(x-3\right)^2+23\le23\)
\(\Rightarrow Max\left(A\right)=23\)
Bài 2 :
\(B=4x^2+12x+30\)
\(\Rightarrow B=4x^2+12x+9+21\)
\(\Rightarrow B=\left(2x+3\right)^2+21\)
Vì \(\left(2x+3\right)^2\ge0\)
\(\Rightarrow B=\left(2x+3\right)^2+21\ge21\)
\(\Rightarrow Min\left(B\right)=21\)
Lời giải:
Vì $x+1, y+2013$ chia hết cho $6$ nên đặt $x+1=6k, y+2013=6m$ với $k,m\in\mathbb{N}^*$
Khi đó:
$4^{x}+x+y=4^{6k-1}+6k-1+6m-2013$
$=4^{6k-1}-2014+6(k+m)$
Vì $4\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}\equiv 1^{6k-1}\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}-2014\equiv 1-2014\equiv -2013\equiv 0\pmod 3$
$\Rightarrow 4^{6k-1}-2014\vdots 3$
Mà $4^{6k-1}-2014$ chẵn với mọi $k\in\mathbb{N}^*$
$\Rightarrow 4^{6k-1}-2014\vdots 6$
Kết hợp với $6k+6m\vdots 6$
$\Rightarrow 4^x+x+y=4^{6k-1}-2014+6k+6m\vdots 6$ (đpcm)