K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Theo bài ra , ta có :

\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\Leftrightarrow\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)=\left(\frac{x+3}{2013}+1\right)+\left(\frac{x+4}{2012}+1\right)\)

\(\Leftrightarrow\left(\frac{x+2+2014}{2014}\right)+\left(\frac{x+1+2015}{2015}\right)=\left(\frac{x+3+2013}{2013}\right)+\left(\frac{x+4+2012}{2012}\right)\)

\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

Vì \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)>0\)

\(\Leftrightarrow x+2016=0\)

\(\Leftrightarrow x=-2016\)

Vậy \(x=-2016\)

Tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)

Chúc bạn học tốt =)) 

11 tháng 1 2017

\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\frac{x+2}{2014}+1+\frac{x+1}{2015}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)

\(\frac{x+2+2014}{2014}+\frac{x+1+2015}{2015}=\frac{x+3+2013}{2013}+\frac{x+4+2012}{2012}\)

\(\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)

\(\left(x+2016\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

MÀ \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)

\(\Rightarrow x+2016=0\)

\(\Rightarrow x=-2016\)

11 tháng 1 2017

Sai đề rồi bạn ơi mình góp ý kiến sửa đề nha 

\(n^3-n^2+2n-2⋮\left(n+1\right)\)

Ta có :  : 

\(f\left(n\right)=n^3-n^2+2n-2\)

\(n+1\)

Áp dụng bất đằng thức Bêzu ta có : 

Số dư của phép chia \(n^3-n^2+2n-2:\left(n+1\right)\) là : 

\(f\left(1\right)=1-1+2-2=0\)

Vậy số dư của phép chia trên bằng 0 

Suy ra ta có \(n^3-n^2+2n-2⋮\left(n+1\right)\left(đpcm\right)\)

Chúc bạn học tốt =)) 

17 tháng 1 2017

Mình chưa biết Bezu là cái gì bạn giải thích cho mình cái Bezu được không?

11 tháng 1 2017

\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x+2}-\frac{1}{\left(x+6\right)}\)

\(\frac{1}{t}-\frac{1}{t+4}=\frac{4}{t\left(t+4\right)}=\frac{1}{8}=\frac{4}{32}\Rightarrow t=4\Rightarrow x=2\)

11 tháng 1 2017

\(x\ne0\Rightarrow2x^4+1+\frac{a^2}{4}=4x^2\Leftrightarrow2x^4-4x^2+1+\frac{a^2}{4}=0\)

\(2\left(x^2-1\right)^2=1-\frac{a^2}{4}\)\(\Rightarrow a^2\le4\Rightarrow GTNN\)=-2

11 tháng 1 2017

Ta co : x2 + \(\frac{81x^2}{\left(x+9\right)^2}=40\)

DKXD : \(x\ne-9\)

\(\Leftrightarrow x^2+\frac{81x^2}{\left(x+9\right)^2}=x^2\left(1+\frac{81}{\left(x+9\right)^2}\right)=0\Leftrightarrow x=0\)

Vay PT co nghiem x=0

11 tháng 1 2017

x² + 81x²/(x + 1)² = 40 
<=> (x/9)² + 1/(1 + 9/x)² = 40/81 
Đặt y = 9/x ( x # 0) 
<=> 1/y² + 1/(1 + y)² = 40/81 
<=> 81y² + 81(1 + y)² = 40y²(1 + y)² 
<=> 81y² + 81 + 2.81y + 81y² = 40y²(1 + y)² 
<=> 40y²(1 + y)² - 162y(1 + y) - 81 = 0 
lại đặt t = y(1 + y) có PT bậc 2 theo t: 
40t² - 162t - 81 = 0 => t = 9/2 ; t = - 9/20 
Bạn tự giải tiếp

11 tháng 1 2017

cho =2016 r` còn tính j nx