cho x*y*z=1 và x+y+z=1/x+1/y+1/z. CMR trong 3 số x,y,z tồn tại một số =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x . (3x + 2y) + 7x . (8y - 4x)
= 15x^2 + 10xy + 56xy - 28x^2
= 66xy - 13x^2
đặt (x^2-1)/x=t ,để ý x/(x^2-1)=1/t
thế vô giải pt tìm t =>tìm x
Ta có:
\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)
\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)
Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2
Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)
\(x\left(x+1\right)\left(x+2\right)=x^3+x^2+8\)
\(\Leftrightarrow x^2+x-4=0\)
\(\Leftrightarrow\left(x^2+\frac{2x}{2}+\frac{1}{4}\right)-4-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{17}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{17}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{2}-\frac{1}{2}\\x=-\frac{\sqrt{17}}{2}-\frac{1}{2}\end{cases}}\)