cho tam giác vuông ABC đường cao AH , M là trung điểm AH. D là giao điểm của BM với đường trung trực AC . Chứng minh rằng tam giác DBC vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(A=\frac{x}{\left(x+2017\right)^2}\left(x>0\right)\)
\(\Rightarrow A=\frac{x}{x^2+4034x+2017^2}\)
Vì x>0 nên ta chia cả tử và mẫu của biễu thức A cho x \(\left(x\ne0\right)\)
Suy ra \(\frac{1}{x+4032+\frac{2017^2}{x}}\)
Vì \(\left(x>0\right)\Rightarrow\frac{2017^2}{x}>0\)
Áp dụng BĐT Côsi với 2 số x>0 và \(\frac{2017^2}{x}>0\)
Ta có : \(x+\frac{2017^2}{x}\ge2\sqrt{x+\frac{2017^2}{x}}\)
\(\Rightarrow x+\frac{2017^2}{x}\ge2.2017\)
\(\Rightarrow x+\frac{2017^2}{x}\ge4034\)
\(\Rightarrow x+\frac{2017^2}{x}+4034\ge8068\)
\(\Rightarrow\frac{1}{x+\frac{2016^2}{x}+4032}\le\frac{1}{8064}\Rightarrow A\le\frac{1}{8064}\)
\(\Rightarrow MaxA=\frac{1}{8064}\)
Dấu bằng xảy ra \(\Leftrightarrow x=\frac{2017^2}{x}\)
\(\Leftrightarrow x^2=2017^2\)
Vì x > 0
\(\Rightarrow x=2017\)
Vậy MaxA = \(\frac{1}{8064}\)khi và chỉ khi x = 2017
Chúc bạn học tốt =))
Ta có: \(a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta có: \(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
\(=\frac{1}{a^2+2bc-ab-bc-ca}+\frac{1}{b^2+2ca-ab-bc-ca}+\frac{1}{c^2+2ab-ab-bc-ca}\)
\(=\frac{1}{a^2+bc-ca-ab}+\frac{1}{b^2+ca-ab-bc}+\frac{1}{c^2+ab-bc-ca}\)
\(=-\left(\frac{1}{\left(a-b\right)\left(c-a\right)}+\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)}\right)\)
\(=-\frac{b-c+c-a+a-b+}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
PS: Hồi tối lười để người khác làm mà không ai làm thôi t làm vậy
( a+b+c)^2 = a^2 + b^2 + c^2
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = a^2 + b^2 + c^2
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - a^2 - b^2 - c^2 = 0
=> 2ab + 2bc + 2ac = 0
ta có
A = \(\frac{1}{a^2+2bc}\)+ \(\frac{1}{b^2+2ac}\)+ \(\frac{1}{c^2+2ab}\)
= \(\frac{1}{a^2+2bc}\)+ \(\frac{1}{b^2+2ac}\)+ \(\frac{1}{c^2+2ab}\) + 2ab + 2bc + 2ac
đến đây bạn nhóm lại nhé mk giải ra thì dài lắm nên chỉ gợi ý cho bn đấy đây thôi
câu này thi bn quy đòng bình thường mà tính thôi
khai triển ra
rồi tạo ra x= y để thay vào bạn cứ biến đổi
như vậy thì sẽ ra thôi
Mình thích nhân phân phối không thích ghép
(x-3)^3=x^3-3.3.x^2+3.3^2.x-3^3
ok
(x-3)^3=27+19=54
\(x=3+\sqrt[3]{54}=3+3\sqrt{2}\)
Bài này giải theo phương trình tích
Ta có : x^3 - 9x^2 + 27x =19
<=> x^3 - 9x^2 + 27x -19 = 0
<=> x^3 - x^2 - 8x^2 + 8x + 19x -19 = 0
<=> x^2(x-1) - 8x(x-1) + 19(x-1) = 0
<=> (x-1)(x^2 - 8x + 19) = 0
Ta CM được x^2 - 8x + 19 >0
=> x-1= 0 <=> x=1
Vậy phương trình có nghiêm x=1
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)