K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(=\frac{11}{-5}\cdot\frac{-9}{11}\cdot\frac{15}{-14}\cdot\frac{2}{5}+-\frac{2}{77}\cdot\frac{5}{-3}\)
\(=\frac{9}{5}\cdot-\frac{15}{14}\cdot\frac{2}{5}+\frac{10}{231}\)
\(=-\frac{841}{1155}\)

17 tháng 8 2018

\(2+\left(x-1\right)^2=0\)

\(\left(x-1\right)^2=-2\left(loại\right)\)

P/s : làm từng phần một

17 tháng 8 2018

( x - 1 ) ( x - 5 ) > 0 

TH1: cả x - 1 và x - 5 lớn hơn 0

+) x - 1 > 0 => x > 1

+) x - 5 > 0 => x > 5 

=> x > 5

TH2 : cả x - 1 và x - 5 đều bé hơn 0

+) x - 1 < 0 => x < 1

+) x - 5 < 0 => x < 5

=> x < 1

Vậy,..........

17 tháng 8 2018

\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{3333\div101}{2020\div101}+\frac{333333\div10101}{303030\div10101}+\frac{33333333\div1010101}{42424242\div1010101}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)

= 7/4 . 44/7

= 11

17 tháng 8 2018

\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33.101}{20.101}+\frac{33.10101}{30.10101}+\frac{33.1010101}{42.1010101}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(=\frac{7}{4}.33.\frac{4}{21}\)

\(=11\)

Tham khảo nhé~

17 tháng 8 2018

a) Gọi I là giao điểm  của AB và CD

Xét tam giác ADC và ABE ta có:

AD = AB ( do tam giác ABD đều )

góc DAC = góc BAE ( = góc BAC + 60 độ )

AC = AE ( do tam giác ACE đều )

=> Tam giác ADC = tam giác ABE ( c.g.c )

=> góc ADC = góc ABE ( 2 góc tương ứng )

Ta có : góc ADC = góc ABE 

            góc BIM = góc AID

=> \(180^o-\left(\widehat{ADC}+\widehat{AID}\right)=180^o-\left(\widehat{ABE}+\widehat{BIM}\right)\)

=> góc DAI = góc BMI = 60 độ

=> góc BMC = 180 độ - 60 độ = 120 độ

b) Trên cạnh MD lấy điểm F sao cho MB = MF

Tam giác BMF có : góc BMF = 60 độ; MB = MF

=> Tam giác BMF đều

=> MB = BF; góc MBF = 60 độ

Ta có : góc DBF = góc ABD - góc ABF = 60 độ - góc ABF

            góc ABM = góc MBF - góc ABF = 60 độ - góc ABF

=> góc DBF = góc ABM

Xét tam giác AMB và tam giác DFB ta có :

MB = FB ( CM trên )

góc ABM = góc DBF ( CM trên )

AB = DB ( tam giác ABD đều )

=> Tam giác AMB = tam giác DFB ( c.g.c )

=> AM = DF ( 2 cạnh tương ứng )

=> AM + BM = DF + MF = MD ( đpcm )

c) Tam giác BMF đều => góc MFB = 60 độ 

=> góc BFD = 180 độ - 60 độ = 120 độ

Tam giác AMB = tam giác DFB => góc AMB = góc BFD = 120 độ

Ta có : góc AMB + góc BMC + góc AMC = 360 độ

=> góc AMC = 360 độ - ( 120 độ + 120 độ ) = 120 độ

=> góc AMC = góc BMC ( đpcm )