Cho N = \(\frac{1}{2^2}\) + \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) Chứng tỏ rằng \(\frac{2}{5}< N< \frac{8}{9}\)
Giúp mình nhanh với đang cần gấp lắm luôn, mai mình phải phải nộp bài rồi
mn giú mình nhanh mình tick nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{5}{11}.\frac{4}{9}+\frac{5}{11}.\frac{8}{9}-\frac{5}{11}.\frac{1}{9}\)
\(=\frac{5}{11}\left(\frac{4}{9}+\frac{8}{9}-\frac{1}{9}\right)\)
\(=\frac{5}{11}.\frac{11}{9}=\frac{5}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(3x-4=6+2x\)
\(\Leftrightarrow3x-4-6-2x=0\)
\(\Leftrightarrow x-10=0\Leftrightarrow x=10\)
b, \(\frac{27}{40}x-\frac{3}{\frac{4}{15}}=\frac{2}{\frac{1}{12}}\)
\(\Leftrightarrow\frac{27}{40}x-\frac{45}{4}=24\Leftrightarrow\frac{27}{40}x=\frac{141}{4}\Leftrightarrow x=\frac{470}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2019}=B\)
\(\Rightarrow A-B-1=-1\)
\(\Rightarrow\left(A-B-1\right)^{2019}=-1\)
ai giải giúp mình nhanh với
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình